Please use this identifier to cite or link to this item: 10.1128/mbio.02135-23
Title: A unique borrelial protein facilitates microbial immune evasion
Authors: Foor, Shelby D
Brangulis, Kalvis
Shakya, Anil K
Rana, Vipin S
Bista, Sandhya
Kitsou, Chrysoula
Ronzetti, Michael
Alreja, Adit B
Linden, Sara B
Altieri, Amanda S
Baljinnyam, Bolormaa
Akopjana, Inara
Nelson, Daniel C
Simeonov, Anton
Herzberg, Osnat
Caimano, Melissa J
Pal, Utpal
Department of Human Physiology and Biochemistry
Keywords: Borrelia burgdorferi;tick-borne pathogens;immune evasion;1.6 Biological sciences;1.1. Scientific article indexed in Web of Science and/or Scopus database
Issue Date: 31-Oct-2023
Citation: Foor , S D , Brangulis , K , Shakya , A K , Rana , V S , Bista , S , Kitsou , C , Ronzetti , M , Alreja , A B , Linden , S B , Altieri , A S , Baljinnyam , B , Akopjana , I , Nelson , D C , Simeonov , A , Herzberg , O , Caimano , M J & Pal , U 2023 , ' A unique borrelial protein facilitates microbial immune evasion ' , mBio , vol. 14 , no. 5 , e0213523 . https://doi.org/10.1128/mbio.02135-23
Abstract: Borrelia burgdorferi, the pathogen of Lyme disease, encodes many conserved proteins of unknown structure or function, including ones that serve essential roles in microbial infectivity. One such protein is BB0238, which folds into a two-domain protein, as we have determined by X-ray crystallography and AlphaFold analysis. The N-terminal domain begins with a helix-turn-helix motif (HTH), previously referred to as a tetratricopeptide repeat (TPR) motif, known to mediate protein-protein interactions. The fold of the C-terminal domain has been seen in proteins with a range of unrelated activities and thus does not infer function. In addition to its previously known binding partner BB0323, another essential borrelial virulence determinant, we show that BB0238 also binds a second protein, BB0108, a borrelial ortholog of the chaperone protein SurA and the peptidyl-prolyl cis/ trans isomerase protein PrsA. An in vitro enzymatic assay confirmed the catalytic activity. We also determined the crystal structure of the catalytic domain of BB0108, which revealed the parvulin-type organization of the key catalytic residues. We show that BB0238 influences the proteolytic processing of BB0323, although the TPR/HTH motif is not involved in the process. Instead, we show that the motif stabilizes BB0238 in the host environment and facilitates tick-to-mouse pathogen transmission by aiding spirochete evasion of early host cellular immunity. Taken together, these studies highlight the biological significance of BB0238 and its interactions with multiple B. burgdorferi proteins essential for microbial infection. IMPORTANCE Lyme disease is a major tick-borne infection caused by a bacterial pathogen called Borrelia burgdorferi, which is transmitted by ticks and affects hundreds of thousands of people every year. These bacterial pathogens are distinct from other genera of microbes because of their distinct features and ability to transmit a multi-system infection to a range of vertebrates, including humans. Progress in understanding the infection biology of Lyme disease, and thus advancements towards its prevention, are hindered by an incomplete understanding of the microbiology of B. burgdorferi, partly due to the occurrence of many unique borrelial proteins that are structurally unrelated to proteins of known functions yet are indispensable for pathogen survival. We herein report the use of diverse technologies to examine the structure and function of a unique B. burgdorferi protein, annotated as BB0238-an essential virulence determinant. We show that the protein is structurally organized into two distinct domains, is involved in multiplex protein-protein interactions, and facilitates tick-to-mouse pathogen transmission by aiding microbial evasion of early host cellular immunity. We believe that our findings will further enrich our understanding of the microbiology of B. burgdorferi, potentially impacting the future development of novel prevention strategies against a widespread tick-transmitted infection.
Description: Publisher Copyright: © 2023 American Society for Microbiology. All rights reserved.
DOI: 10.1128/mbio.02135-23
ISSN: 2161-2129
Appears in Collections:Research outputs from Pure / Zinātniskās darbības rezultāti no ZDIS Pure

Files in This Item:
File SizeFormat 
A_unique_borrelial_protein.pdf3.49 MBAdobe PDFView/Openopen_acces_unlocked


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.