Please use this identifier to cite or link to this item: 10.3390/polym14163369
Title: The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites
Authors: Lu, Po-Wen
Jaihao, Chonlachat
Pan, Li-Chern
Tsai, Po-Wei
Huang, Ching-Shuan
Brangule, Agnese
Zarkov, Aleksej
Kareiva, Aivaras
Wang, Hsin-Ta
Yang, Jen-Chang
Department of Pharmaceutical Chemistry
Keywords: 1.4 Chemical sciences;3.4 Medical biotechnology;1.1. Scientific article indexed in Web of Science and/or Scopus database
Issue Date: 18-Aug-2022
Citation: Lu , P-W , Jaihao , C , Pan , L-C , Tsai , P-W , Huang , C-S , Brangule , A , Zarkov , A , Kareiva , A , Wang , H-T & Yang , J-C 2022 , ' The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites ' , Polymers , vol. 14 , no. 16 , 3369 . https://doi.org/10.3390/polym14163369
Abstract: Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl 2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu 2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρ o (V - Vc) -t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 10 7 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.
Description: Funding Information: The authors would like to thank MOST for financially supporting this work under grant No. MOST 110-2224-E-038-001. Publisher Copyright: © 2022 by the authors.
DOI: 10.3390/polym14163369
ISSN: 2073-4360
Appears in Collections:Research outputs from Pure / Zinātniskās darbības rezultāti no ZDIS Pure

Files in This Item:
File SizeFormat 
The_Processing_and_Electrical_Properties.pdf4.51 MBAdobe PDFView/Openopen_acces_unlocked


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.