Browsing by Author "Jaudzems, Kristaps"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Heart-Type Fatty Acid Binding Protein Binds Long-Chain Acylcarnitines and Protects against Lipotoxicity(2023-03-14) Zelencova-Gopejenko, Diana; Videja, Melita; Grandane, Aiga; Pudnika-Okinčica, Linda; Sipola, Anda; Vilks, Karlis; Dambrova, Maija; Jaudzems, Kristaps; Liepinsh, Edgars; Faculty of PharmacyHeart-type fatty-acid binding protein (FABP3) is an essential cytosolic lipid transport protein found in cardiomyocytes. FABP3 binds fatty acids (FAs) reversibly and with high affinity. Acylcarnitines (ACs) are an esterified form of FAs that play an important role in cellular energy metabolism. However, an increased concentration of ACs can exert detrimental effects on cardiac mitochondria and lead to severe cardiac damage. In the present study, we evaluated the ability of FABP3 to bind long-chain ACs (LCACs) and protect cells from their harmful effects. We characterized the novel binding mechanism between FABP3 and LCACs by a cytotoxicity assay, nuclear magnetic resonance, and isothermal titration calorimetry. Our data demonstrate that FABP3 is capable of binding both FAs and LCACs as well as decreasing the cytotoxicity of LCACs. Our findings reveal that LCACs and FAs compete for the binding site of FABP3. Thus, the protective mechanism of FABP3 is found to be concentration dependent.Item Structural and functional analysis of bba03, borrelia burgdorferi competitive advantage promoting outer surface lipoprotein(2020-10) Fridmanis, Jēkabs; Bobrovs, Raitis; Brangulis, Kalvis; Tārs, Kaspars; Jaudzems, Kristaps; Department of Human Physiology and BiochemistryBBA03 is a Borrelia burgdorferi outer surface lipoprotein encoded on one of the most conserved plasmids in Borrelia genome, linear plasmid 54 (lp54). Although many of its genes have been identified as contributing or essential for spirochete fitness in vivo, the majority of the proteins encoded on this plasmid have no known function and lack homologs in other organisms. In this paper, we report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBA03, which is known to provide a competitive advantage to the bacteria during the transmission from tick vector to mammalian host. BBA03 shows structural homology to other outer surface lipoproteins reflecting their genetic and evolutionary relatedness. Analysis of the structure reveals a pore in BBA03, which could potentially bind lipids.Item Structural characterization of CspZ, a complement regulator factor H and FHL-1 binding protein from Borrelia burgdorferi(2014-06) Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Bogans, Janis; Otikovs, Martins; Jaudzems, Kristaps; Ranka, Renate; Tars, Kaspars; Rīga Stradiņš UniversityBorrelia burgdorferi is the causative agent of Lyme disease and is found in two different types of hosts in nature - Ixodes ticks and various mammalian organisms. To initiate disease and survive in mammalian host organisms, B. burgdorferi must be able to transfer to a new host, proliferate, attach to different tissue and resist the immune response. To resist the host's immune response, B. burgdorferi produces at least five different outer surface proteins that can bind complement regulator factor H (CFH) and/or factor H-like protein 1 (CFHL-1). The crystal structures of two uniquely folded complement binding proteins, which belong to two distinct gene families and are not found in other bacteria, have been previously described. The crystal structure of the CFH and CFHL-1 binding protein CspZ (also known as BbCRASP-2 or BBH06) from B. burgdorferi, which belongs to a third gene family, is reported in this study. The structure reveals that the overall fold is different from the known structures of the other complement binding proteins in B. burgdorferi or other bacteria; this structure does not resemble the fold of any known protein deposited in the Protein Data Bank. The N-terminal part of the CspZ protein forms a four-helix bundle and has features similar to the FAT domain (focal adhesion targeting domain) and a related domain found in the vinculin/α-catenin family. By combining our findings from the crystal structure of CspZ with previous mutagenesis studies, we have identified a likely binding surface on CspZ for CFH and CFHL-1.