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Abstract. This work describes a method for the rapid element analysis of plant material using 
ED-XRF in conjunction with chemometrics. An effective analysis method is developed by 
measuring certified reference materials (CRM) of plant materials (algae, cabbage, lichen) 
covering major chemical elements with ED-XRF, to overcome the matrix effect. All samples 
have been measured additionally by ICP-MS. The ICP-MS analysis was used for missing 
information on the concentration of some elements in certificated standards. In addition, ICP-MS 
with CRM has been used to determine sample related element sensitivity for microelements for 
ED-XRF analyses. 
The ED-XRF spectral patterns were used for multivariate principal component analyses by 
SIMCA strategy instead of each element concentration calculation. The model allows quickly 
analyse samples for similarity and differentiate them based on a little difference in spectral 
pattern, which corresponds to a minor difference in element concentration pattern. Samples with 
specific chemical composition could be easily spotted for in-depth analysis. 
The proposed strategy for plant material sample chemical composition screening allows the quick 
method to improve laboratory work efficiency, reduce unnecessary analysis and rapid method for 
control reliability of results of more complex chemical methods, such as ICP-MS. 
 
Key words: chemometrics, ED-XRF, ICP-MS, multivariate analysis, plants, screening analysis, 
SIMCA. 
 

INTRODUCTION 
 

Research on plants and medicinal herbs has a long tradition. However, plants' 
complex composition is a challenge for their analysis because plants contain both 
organic and inorganic constituents (Elzain et al., 2016; Pohl et al., 2018; Winkler et al., 
2020). The main challenges in plant’s multi-element analysis using analytical techniques 
are concentration variation (macro, micro and trace), content of water, spatial variation 
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of the composition, matrix effect (mainly organic substances), difficulties in sample 
preparation, digestion, extraction procedures (Bharti et al., 2017; Bharti et al., 2021). 

The chemical composition of plants is affected by several factors: soil composition, 
climatic and environmental conditions, water quality, fertilisation and plant protection 
agents, and their ability to assimilate, accumulate and transfer elements (Laursen et al., 
2011; Pytlakowska et al., 2012; Pohl et al., 2018; georgieva et al., 2020). 

Previous studies have shown that plants are a link between soil quality and human 
and animal organisms. Therefore, they can be used as powerful indicators (Queralt et al., 
2005; Malizia et al., 2010; Laursen, et al., 2011; Pytlakowska, et al., 2012; Remon et al., 
2013). 

Essential and trace elements play a significant role in plants (Vatansever, 2016). 
Several techniques, such as atomic absorption spectroscopy (AAS), inductively coupled 
plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission 
spectroscopy (ICP-AES), neutron activation analysis (NAA), X-ray fluorescence (XRF) 
spectroscopy, energy dispersive X-ray fluorescence (ED-XRF) spectroscopy, 
synchrotron radiation X-ray fluorescence (SR ED-XRF) spectroscopy, laser-induced 
breakdown spectroscopy (LIBS), particle-induced X-ray emission (PIXE), etc. are g 
enerally used for the trace element analysis in plants and medicinal herbs (Başgel & 
Erdemoğlu, 2006; Babu et al., 2015; Elzain et al., 2016; Bharti et al., 2019; Lázaro et al., 
2020; Winkler et al., 2020). The drawback of AAS, ICP-MS, ICP-AES techniques is the 
requirement of sample digestion and dissolution. These techniques are time-consuming 
and destructive. Non-destructive plant sample multi-elemental analysis techniques are 
LIBS, NAA and XRF (ED-XRF and SR ED-XRF). However, these methods also have 
some limitations and drawbacks. For example, the LIBS can be limited by sensitivity 
and reproducibility (Sharma et al., 2018; Lázaro et al., 2020). A serious concern related 
to NAA and SR ED-XRF techniques is synchrotron and nuclear reactor availability and 
cost for routine analysis and quality control of plants and medicinal herbs. 

The present study describes a method for the rapid element analysis and profiling 
(fingerprinting) plant material using energy dispersive X-ray fluorescence spectroscopy 
(ED-XRF). The ED-XRF method is non-destructive, has minimal sample preparation, 
simple spectra, and is applicable as a multi-element method over a wide range of 
concentrations, and the equipment cost is low. This technique has been used for the 
micro-elemental qualitative and quantitative analysis (Ekinci et al., 2003; Mbaye et al., 
2015). In this work, the ED-XRF patterns combined with multivariate principal 
component analysis (PCA) were used for fingerprinting, which implies the 
determination of combinations of elements (Djingova et al., 2004). A fingerprint is 
defined as a specific profile that visualises the chemical composition of a particular 
sample. Several studies suggest that the fingerprinting technique can be effectively used 
to construct a specific pattern of recognition. Fingerprints can be used for organic and 
inorganic matter characterisation in plants, such as ICP and XRF methods for inorganic, 
but FTIR and chromatography for organic composition. The ED-XRF fingerprinting 
technique combined with a multivariate statistical procedure is used to extract 
information from these fingerprinting profiles about the origin, quality and to compare 
fingerprinting profiles of different herbs (Laursen et al., 2011; Custers et al., 2016; 
Torres Astorga et al., 2018; Brangule et al., 2020). 



58 

The XRF method is strongly influenced by matrix effects (Guild & Stangoulis, 
2016). In addition, light elements comprising water and organic matter also negatively 
affect measurements due to X-ray scattering and attenuation (Ravansari, 2020). 
To minimise the plants' matrix effect, four matrix-matched reference materials were 
used, covering a wide range of elements and strict reference values. 

The objective of the present work is to evaluate: (i) the use of the ED-XRF method 
for fingerprinting medicinal herbs in combination with PCA and (ii) the effect of matrix-
matched standards on result interpretation. 

 
MATERIALS AND METHODS 

 
Samples 
The same certified reference materials and medicinal herbal samples were used for 

ICP-MS and for ED-XRF analysis. 
Certified reference materials (CRM): IAEA 336 Lichen, IAEA 392 Algae, IAEA 413 

Algae, BCR 679 Algae were used to standardise methods for the following elements:  
Al, As, Ba, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, 
Se, Sr, V, Zn. 

Plant Material – medicinal herbs (MH): 13 different Chamomile (Matricariae flos), 
6 small-leaved Linden (Tiliae flos), 4 Calendula (Calendulae flos) and Hibiscus (Hibisci 
sabdariffae flos) commercial tea samples available in Latvia. 

 
Sample preparation 
All medicinal herb samples were ground to powder and sifted through a 2 mm 

sieve. Powders were stored at room temperature for further analysis. 
For the XRF method samples were pressed in pellets using a manual hydraulic 

press. The diameter of the pellet disc was 10 mm and mass 0.2 g. The pellets reduce 
scattering, show a higher signal-to-noise ratio, and this allows the light elements to be 
detected above the background. 

For the ICP method samples were prepared using the microwave-assisted acid 
digestion method. Samples were ground with a laboratory mill (ЛЗМ, Russia) and then 
sieved through a 0.2 mm sieve (Rotilabo). Approximately 0.2 g of each sample was 
weighed into Teflon vessel, then 6 mL of concentrated HNO3 (TraceMetal grade, 69%, 
Fischer) and 2 mL of concentrated H2O2 (For Trace Analysis, 30%, Fischer) were added, 
and the vessel was tightly closed. Samples were heated in a microwave oven (Milestone 
Start E) under pressure conditions. The heating program was set as heating for 15 min 
to 160 °C and holding at 160 °C for 30 min. After heating, vessels were cooled to room 
temperature and deionized water (< 0.055 µS cm-1, Adrona) was used to dilute samples 
to 50 mL. 

 
Analytical methods 
ED-XRF. Shimadzu EDX-8000 (furnished with a Rh anode, max power 50 kV, 

vacuum, no filter, 10 mm collimator, 600 s measurement time). 
ICP-MS. Inductively Coupled Plasma Mass Spectrometer (Agilent 8900 ICP-MS 

QQQ) equipped with a micro-mist nebuliser and He collision cell was applied to 
determine the following elements: Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, 
Zn, g a, g e, As, Se, Rb, Sr, Y, Cd, Ba, La, Ce, W, and Pb. 
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The following instrumental parameters of ICP-MS were set: RF power (1.550 W); 
sampling depth (8 mm); nebulizer gas flow rate (0.90 mL min-1); plasma gas flow 
(15 L min-1); He cell gas flow (5 mL min-1); extraction 1 lens (-5.0 V); extraction 2 lens 
(7.0 V); omega lens 7.0 (-200 V); omega bias lens (-110 V); octupole bias (-3.0 V);  
cell gas flow rate (20% of full scale); axial acceleration (1.0 V). 

The calibration g raph was made using six standard solutions in the concentration 
range from 0.1 µg L-1 to 500.0 µg L-1. Analytical standard stock solutions were prepared 
from Certified Reference Material (HPS, ICP-MS-68A, 10 mgL-1, traceable to NIST 
SRM 3100). Element concentrations in samples were calculated using the external 
calibration graph method, and the blank correction was applied. Internal standard 
solution (10 µg L-1, Agilent) was used for system stability control during measurements. 
Two standard solutions (10 µg L-1) were used between every ten samples to verify 
system stability. 

 
Analysis of the spectra 
The ED-XRF spectra were evaluated in order to select emission lines. Spectra were 

investigated, and normalisation was performed with the academic freeware software 
SpectraGryph 1.2.14. The spectra were normalised to the Rh tube emitted Rh Kα line. 

The ICP-MS data procession, collection, and calculation of results were made by a 
MassHunter workstation program, including its subprograms - Instrument control and 
Offline data analysis. 

 
Chemometrics 
The principal component and hierarchical cluster analysis were performed using 

SIMCA 14 software. Spectra were smoothed and denoised by a Savitzky - golay filter 
(polynomial order 5 and points 10), the second derivative of the samples was recorded. 
The component analysis was used to identify the dominant clusters in the data set. For 
the HCA, Ward’s algorithm was used. 

 
RESULTS AND DISCUSSION 

 
Since the ICP-MS is suitable for a wide range of concentrations and elements, the 

ICP-MS method was chosen to fill the missing dates in creating a fingerprinting model. 
Theoretically, the ED-XRF method can measure a wide range of elements, from sodium 
Na (11) through uranium U (92). In practice, ED-XRF sensitivity is not sufficient for 
light elements such as sodium, magnesium, aluminium and silicon. The same certified 
reference materials (IAEA 336 Lichen, IAEA 392 Algae, IAEA 413 Algae, BCR 679 
Algae) and medicinal herbal samples were used for both methods ICP-MS and ED-XRF. 

Standard materials are usually certified for specific elements (10–15) with a 
specific concentration. Concentrations can vary significantly from one certified material 
to another. The ICP-MS method was chosen, to obtain information about the standards 
of uncertified components and their concentrations with high probability. 

Analysing the ED-XRF spectra (Fig. 1) together with the quantitative results obtained 
by ICP-MS, the information about the sensitivity of the ED-XRF method and the 
detection limits of elements was obtained. For example, in certified standards, elements 
in very different concentration intervals were detected. For K–elements: magnesium Mg 
minimal concentration 4,000 mg kg-1; aluminium Al and silicon Si – 600 mg kg-1; 
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phosphorus P and sulphur S – 200 mg kg-1; titanium Ti to molybdenum Mo–10 mg kg-1 
and L–elements such as led Pb and mercury Hg at least 50 mg kg-1. 

 

 
 

Figure 1. The ED-XRF patterns for certified reference standards (CRM). 
 

It can be concluded that analysing different samples must consider that a high 
concentration of an element in a sample does not g uarantee that these elements will have 
visible peaks in the spectrum. For example, magnesium - a small peak can be observed 
only in a sample with a concentration above 4,000 mg kg-1. However, the peak is not 
visible in the sample with a magnesium concentration above 1,000 mg kg-1. 

Analysis of the data obtained by the ICP-MS and ED-XRF method shows that the 
intensity of spectral lines depends on the combination of elements in the samples. For 
example, a high concentration of potassium K in CRM 679 affects the sensitivity of 
aluminium Al. High concentration potassium reduces the possibility to identify 
aluminium as escape peaks partly overlap the spectral line of aluminium. Nevertheless, 
in CRM 336, potassium concentration is significantly lower, and aluminium is detectable 
at 680 mg kg-1. 

Fig. 2 shows an example of two elements Cu and Zn, with high sensitivity. Copper 
is detectable at low concentration ~ 3 mg kg-1, but zinc makes intensity patterns 
proportionally to CRM certified concentrations. 

The obtained data showed that very significant in the fingerprinting is the 
interference effect - the overlapping of spectral lines distorting results for one or more 
elements. For example, overlapping spectral lines for: led Pb Lα and arsenic As Kα 
(10.55 keV); arsenic As Kβ and mercury Hg Lβ (11.80 keV) and chlorine Cl Kα and 
rhodium Rh lamp Lα and Lβ spectral lines (Fig. 3) were detected. 
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Literature shows that it is possible to build a fingerprinting model even if there are 
overlapping peaks. This is because the overlapping peak g ives the spectrum a particular 
shape, making the spectrum unique for each sample. 

 
 

Figure 2. ED-XRF pattern intensities of Cu and Zn affected by the concentration in the certified 
reference material. 
 

The next point of interest was to differentiate ED-XRF fingerprints of medicinal 
herbs MH and verify compliance with certificated reference materials. The conclusions 
about the fingerprinting method's effect were obtained by combining the ED-XRF and 
ICP-MS methods with unsupervised multidimensional statistical analysis. 

 

 
 

Figure 3. Overlapping element peaks for chlorine Cl and rhodium Rh. 
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The formation of clusters was depicted in diagrams and dendrograms. Four major 
clusters in PCA can be identified (Fig. 4): linden, chamomile, calendula and separate 
cluster for three reference materials – IAEA 336 Lichen, IAEA 392 Algae, IAEA 413 Algae. 

 

 
 

Figure 4. The PCA clusters for certified reference standards (CRM) and medicinal herbs.  
Red diamonds – CRM; blue – linden; green – chamomile; orange – calendula; violet – hibiscus. 
 

PCA1 describes 67%, but PCA2 19%, forming 86% of spectral information. 
Loadings of PCA show a clear difference between PCA1 and PCA2: the potassium 
concentration describes dispersion across the PCA1 axis in samples, but across the PCA2 
axis - by the ratio between calcium and iron concentration - dominant increase in calcium 
concentration and decrease in iron concentration. A combination of the first two 
components describes 85% of the composition of detectable elements. Cluster 
component PCA3 forms only 7% of the information, showing a dominant increase in 
iron concentration. 

The PCA diagram shows that only one standard fits into the herbal cluster. The 
other three CRMs form a separate cluster. This leads to the conclusion that the matrix 
effect is essential using the fingerprint method and should be taken into account when 
choosing standards. 

 



63 

CONCLUSIONS 
 

This work demonstrates the potential of the ED-XRF spectra fingerprinting method 
in combination with statistical analysis as a sensitive, rapid and non-destructive method 
for quality control in order to check trace element contents on this type of matrix. 

The XRF method has improved during recent years by enhancing SDD detector 
resolution and increasing count rates. The current technical capabilities of XRF systems 
provide researchers with valuable information about major micro and macro elements. 
However, the use of XRF for the control of trace concentration of heavy elements is 
limited by current sensitivity, and more sensitive methods should be used.  
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