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Abstract: A synthesis of 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-
1-ium iodides with ethyl or nonyl ester groups at positions 3 and 5 was performed. Treatment of
the corresponding 2’,6’-dimethyl-1’,4’-dihydro-[3,4’-bipyridine]-3’,5’-dicarboxylates with Selectfluor®

followed by quaternization of pyridine moiety in the obtained dialkyl 2,4-diacetyl-2,4-difluoro-3-(pyridin-
3-yl)pentanedioates with methyl iodide gave the desired 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-
dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides. This type of compound would be useful as synthetic
lipids for further development of the delivery systems. The obtained target compounds were
fully characterized by 1H NMR, 19F NMR, 13C NMR, HRMS, IR and UV data. The estimation of
self-assembling properties and characterization of the nanoparticles obtained by ethanol solution
injection in an aqueous media were performed by dynamic light scattering (DLS) measurements.
DLS measurement data showed that 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-dioxoheptan-4-
yl)-1-methylpyridin-1-ium iodide created liposomes with the average diameter of 300–400 nm and
polydispersity index (PDI) value around 0.30–0.40, while 3-(3,5-difluoro-3,5-bis((ethyloxy)carbonyl)-
2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide formed a heterogeneous sample with PDI value
1, which was not prospective for delivery system development.

Keywords: 2,4-diacetyl-2,4-difluoro-3-pyridinylpentanedioates; Selectfluor®; pyridinium; DLS;
nanoparticles; self-assembling properties; synthetic lipids

1. Introduction

N-Heterocyclic compounds represent a large class of organic molecules, where many
representatives possess various biological activities and are widely applied in medicine.
Pyridine and structurally related molecules—dihydropyridine and pyridinium derivatives—are
suggested as prevalent structural units for pharmaceutical targets [1]. According to the US
Food and Drug Administration (FDA) database, a pyridine and dihydropyridine system
containing drugs reaches almost 18% of the N-heterocyclic drugs approved by the agency
in the major therapeutic areas—infectious diseases, inflammation, the nervous system
and oncology [2]. Additionally, structurally diverse pyridinium salts are quite common
structures in various pharmaceuticals and many natural compounds. Pyridinium salts
are usable in a wide range of research topics. Pyridinium ionic liquids and pyridinium
ylides are used in synthetic chemistry and in material science and biological issues related
to gene delivery, antimicrobial, anticancer and antimalarial activities [3]. Different SAINT
pyridinium salts with alkyl chain variations at the quaternized pyridine N-atom or as
substituents at the pyridinium cycle were proposed as active gene delivery agents by several
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research groups [4–6]. Additionally, gemini dioleylbispyridinium-based amphiphiles were
elaborated for nucleic acid transfection [7].

Pyridinium salts based on 1,4-dihydropyridine (1,4-DHP) core possessed self-assembling
properties, formed liposomes, and some of them were found to be active in DNA delivery [8–10].
These liposomes filled with magnetic iron oxide nanoparticles formed magnetoliposomes [11].
Magnetic nanoparticles functionalized by pyridinium moieties containing 1,4-DHP demon-
strated bactericidal and immunomodulatory properties [12]. It was also found that am-
phiphilic 1,4-DHP, depending on the structure, possessed selective cytotoxicity—significant
cytotoxicity toward cancer cell lines HT-1080 and MH-22A with still very low cytotoxicity in
noncancerous NIH3T3 cells [13]. It was recently demonstrated that 4-(N-alkylpyridinium)-
1,4-DHP showed toxicity in Gram-positive and Gram-negative bacteria species and eu-
karyotic microorganisms [14], and they also demonstrated calcium channel blocking and
antioxidant activities [15]. It was shown that 4-(N-dodecylpyridinium)-1,4-dihydropyridine
crossed the blood–brain barrier and blocked neuronal and vascular calcium channels [16].

The interest in fluorinated surfactants has increased due to their chemical and biologi-
cal inertness and their hydrophobic and, at the same time, lipophobic character. Fluorous-
containing amphiphiles are important for the formation of uniform nanoparticles, avoiding
protein denaturation, efficient endocytosis and maintaining low cytotoxicity [17,18]. Several
new fluorinated surfactants on the base of pyridinium salts were recently synthesized and
studied as drug carriers and gene delivery systems with very promising results [19–22].

Herein, we report the synthesis and full characterization of new original synthetic
lipid-like compounds: 3-(3,5-difluoro-3,5-bis((ethyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-
1-methylpyridin-1-ium iodide (4a) and 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-
dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide (4b). The evaluation of the self-assembling
properties of target iodides 4 and characterization of formed nanoparticles were performed
by DLS measurements in an aqueous solution.

2. Results and Discussion

Taking into account the fact that the introduction of fluorine atoms in the synthetic
cationic lipid structure may lead to the formation of the original delivery systems with
more pronounced properties, the synthesis of 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-
dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides 4 was performed.

The desired target products—3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxo heptan-
4-yl)-1-methylpyridin-1-ium iodides 4—due to cationic moiety and lipophilic substituents
would be useful as synthetic lipids for further development of delivery systems.

3-(3,5-Difluoro-3,5-bis((ethoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium
iodide (4a) and 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-
methylpyridin-1-ium iodide (4b) were synthesized via a three-step procedure. The synthetic
procedure and the structures of all compounds were depicted in Scheme 1.
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1-ium iodides 4a,b.

Firstly, the parent 2’,6’-dimethyl-1’,4’-dihydro-[3,4’-bipyridine]-3’,5’-dicarboxylates
1a,b were obtained in good yields by three-component Hantzsch-type one-pot cycloconden-
sation reaction of the corresponding acetoacetate, 3-pyridinecarbaldehyde and ammonia
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solution in ethanol under reflux for 8 h according to the previously described proce-
dures [23,24]. The next step—electrophilic fluorination of 1,4-DHPs 1 with Selectfluor®

(2)—was performed following a procedure elaborated by our research group [25,26] and
resulted in the formation of fluorine-containing dialkyl 3-(pyridin-3-yl)pentanedioates
3a and 3b with yields of 98 and 94%, respectively. The electrophilic fluorination of aro-
matic heterocyclic systems has been less studied than the fluorination of arenes. How-
ever, a number of heterocycles, including 1,2-dihydropyridines [27], quinolines [28] and
indoles [29,30] were modified either by direct fluorination or by fluorodecarboxylation
using mainly Selectfluor® or N-fluorobenzenesulfonimide. The last step—treatment of
dialkyl 2,4-diacetyl-2,4-difluoro-3-(pyridin-3-yl)pentanedioates 3 with an excess of methyl
iodide—led to quaternization of the pyridine moiety and formation of target compounds—
3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium io-
dides 4 with 56 and 43% yields, respectively. Quaternization reactions of 4-pyridyl-1,4-
dihydropyridines were usually carried out in acetone or in an acetone–chloroform mixture
if the starting substance was insoluble in acetone [23] or in methyl ethyl ketone (MEK),
which decreased the reaction time and increased the yield of product [24]. In this work,
quaternization reaction was performed in MEK, and the average yields of the product can
be explained by steric hindrance.

The structures of compounds 3a,b and 4a,b were established and confirmed on the
basis of one-dimensional 1H, 19F, 13C NMR spectral data (Supplementary Materials).

In the 19F NMR spectra of compounds 3a,b and 4a,b, a signal of the fluorine atom
appeared as a doublet in the range of −166.1 ppm to −166.5 ppm with the constants around
3JF-H = 29 Hz for compounds 3a,b and in the range of −163.2 ppm to −163.3 ppm with the
constants around 3JF-H = 25 Hz for compounds 4a,b. The corresponding constants were
also observed in the 1H NMR spectra for the proton attached to the carbon between the
two CF groups, which appeared as a triplet in the range of 4.92−4.93 ppm for compounds
3a,b and at 5.10−5.11 ppm for 4a,b.

CF carbon atoms appeared characteristically as doublet multiplets in the 13C NMR
spectra at 99.2−101.4 ppm for compounds 3a,b and at 97.7−99.9 ppm for 4a,b with the
constants around 1JC-F = 213 Hz and 1JC-F = 210 Hz, respectively.

The self-assembling properties of synthetic lipid-like compounds, including cationic
moieties containing 1,4-DHPs, are their characteristic feature. The hydrodynamic average
diameters (Zav) and polydispersity index (PDI) and stability of nanoparticles formed
by 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium
iodides 4a,b in aqueous medium were determined by the DLS method. The results are
summarized in Table 1. The DLS measurements were performed for a freshly prepared
sample and after storage for 1 and 5 days at room temperature.

Table 1. Values of polydispersity index (PDI) and Z-average (Zav) diameter of nanoparticles formed
by 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides
4a,b obtained by DLS measurements. The PDI value describes polydispersity of the sample; the Zav

diameter represents the average hydrodynamic diameter of all nanoparticles in the sample.

Comp.
PDI Zav DH, nm

Fresh * 1 Day ** 5 Days *** Fresh * 1 Day ** 5 Days ***

4a 1.00 ± 0.01 - - 736 ± 84 - -

4b 0.31 ± 0.05 0.42 ± 0.04 0.40 ± 0.06 371 ± 49 335 ± 66 427 ± 53
* Freshly prepared sample; ** After storage for 1 day at r. t.; *** After storage for 5 days at r. t.

It was demonstrated that 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-dioxoheptan-
4-yl)-1-methylpyridin-1-ium iodide (4b) formed nanoparticles with the average diameter
around 370 nm for a freshly prepared sample; after 5 days of storage, the average diameter
of the nanoparticles increased to about 430 nm. The values of PDI were 0.30 for a freshly
prepared sample and around 0.40 for the samples after the storage. These values confirmed
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that the sample can be considered as homogenous. It is suggested that for lipid-based
formulations in drug delivery applications, PDI values of 0.3 and below are considered as
acceptable and indicate homogenous populations of particles [31,32]. A sample of 3-(3,5-
difluoro-3,5-bis((ethyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide
(4a) formed particles with a PDI value of 1, which demonstrated the heterogeneity of
the sample and confirmed that the compound was not prospective for delivery system
development. The evaluation of the sample formed by compound 4a will not be tested
and discussed further. Previously, we obtained similar data for nanoparticles formed by
4-(N-alkylpyridinium)-1,4-DHP derivatives; compounds containing short alkyl chains at
quaternized pyridinium moiety and/or 3,5-ester moieties of the 1,4-DHP cycle were not
prospective as delivery systems [14]. Additionally, the results regarding membranotropic
effects of 4-(N-alkylpyridinium)-1,4-DHP derivatives demonstrated the influence of the
length of alkyl chain at quaternized pyridinium moiety upon the incorporation of 4-(N-
alkylpyridinium)-l,4-DHP derivatives in the liposomal membranes and the influence on
bilayer fluidity [33]. We confirmed the conclusion that variation in the N-alkylpyridinium
chain length also impacted the self-assembling properties of the molecules for 3-(3,5-
difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides
having ethyl (4a) or nonyl (4b) ester groups.

3. Materials and Methods

All reagents were purchased from Acros Organics (Geel, Belgium), Sigma-Aldrich/Merck
KGaA (Darmstadt, Germany) or Alfa Aesar (Lancashire, UK) and used without further
purification. TLC was performed on silica gel 60 F254 aluminum sheets 20 cm × 20 cm
(Merck KGaA, Darmstadt, Germany). The melting points were recorded on an OptiMelt
digital melting point apparatus (Stanford Research Systems, Sunnyvale, CA, USA) and
were uncorrected. 1H, 19F and 13C NMR spectra were recorded on a Bruker Avance Neo
400 MHz (Bruker Biospin Gmbh, Rheinstetten, Germany). Chemical shifts of the hydrogen,
carbon and fluorine atoms are presented in parts per million (ppm) and referred to the
residual signals of the undeuterated CDCl3 (δ: 7.26) solvent for the 1H NMR spectra and
CDCl3 (δ: 77.16) solvent for the 13C NMR, respectively. For the 19F-NMR experiments,
indirect referencing (Bruker standard referencing) was used. The coupling constants J
were reported in hertz (Hz). High-resolution mass spectra (HRMS) were determined on an
Acquity UPLC H-Class system (Waters, Milford, MA, USA) connected to a Waters Synapt
GII Q-ToF operating in the ESI positive or negative ion mode on a Waters Acquity UPLC®

BEH C18 column (1.7 µm, 2.1 mm × 50 mm, using gradient elution with acetonitrile (0.1%
formic acid) in water (0.1% formic acid)). Infrared spectra were recorded with a Prestige-21
FTIR spectrometer (Shimadzu, Kyoto, Japan). UV spectra were recorded on a UV-Vis
Spectrophotometer (501 UV-Vis CamSpec Spectrophotometer; Spectronic CamSpec Ltd.,
Leeds, UK). The DLS measurements of the nanoparticles in aqueous solution were carried
out on a Zetasizer Nano ZSP (Malvern Panalytical Ltd., Malvern, UK) instrument with
Malvern Instruments Ltd. Software 8.01.4906.

3.1. General Procedure for the Synthesis of Dialkyl 2,4-Diacetyl-2,4-difluoro-3-
(pyridin-3-yl)pentanedioates 3a,b

To a stirred solution of 4-pyridyl-1,4-dihydropyridines 1a,b [23,24] (1.5 mmol) in
acetonitrile (15 mL), water (2 mL) was added, after which Selectfluor® (2, 1.34 g, 3.8 mmol)
was added in portions at room temperature. After being stirred at reflux for 1 h, the solvents
were evaporated in vacuo. Then, the remaining residue was diluted with dry diethyl
ether (30 mL), and the precipitate was filtered off. The filtrate was concentrated in vacuo.
Compound 3a was obtained as solid; compound 3b was obtained as oil. Compound 3a
was recrystallized from EtOH. Compounds 3a,b were obtained in 94–98% yields.
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3.2. Diethyl 2,4-Diacetyl-2,4-difluoro-3-(pyridin-3-yl)pentanedioate (3a)

Yield: 98%. Pale yellow solid; m.p. 84–85 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ:
8.60 (s, 1H, Py), 8.51 (dd, 3JH-H = 4.8 Hz, 4JH-H = 1.5 Hz, 1H, Py), 7.71 (d, 3JH-H = 7.6 Hz,
1H, Py), 7.22 (dd, 3JH-H = 8.0 Hz, 3JH-H = 4.8 Hz, 1H, Py), 4.92 (t, 3JH-F = 29.3 Hz, 1H, CH),
4.33−4.19 (m, 4H, 2 × OCH2CH3), 2.02 (m, 6H, 2× COCH3), 1.31 (t, 3JH-H = 7.2 Hz, 6H,
2 × OCH2CH3) ppm. 19F NMR (376 MHz, CDCl3) δ: −166.5 (d, 3JF-H = 29.3 Hz, 2F) ppm.
13C NMR (101 MHz, CDCl3) δ: 200.5 (dd, 2JC-F = 28.7 Hz, 4JC-F = 12.8 Hz, 2 × C(O)CH3),
164.6 (dd, 2JC-F = 25.5 Hz, 4JC-F = 15.6 Hz, 2 × C(O)OC2H5), 152.2 (s, Py), 149.8 (s,
Py), 139.2 (s, Py), 128.3 (s, Py), 123.3 (s, Py), 100.3 (dd, 1JC-F = 213.0 Hz, 3JC-F = 3.4 Hz,
2 × CF), 63.6 (s, 2 × OCH2CH3), 49.9 (t, 2JC-F = 18.3 Hz, CH), 26.4 (s, 2 × CH3), 13.9 (s,
2 × OCH2CH3) ppm. IR νmax (film) 2987 (w), 2941 (m), 1757 (s), 1737 (s), 1570 (s) cm−1. UV-
Vis λmax (EtOH): 210 (log ε 4.70), 260 (3.53) nm. HRMS TOF ESI+ of [C18H21F2NO6 + H]+

(m/z) 386.1420; calcd: 386.1415.

3.3. Dinonyl 2,4-Diacetyl-2,4-difluoro-3-(pyridin-3-yl)pentanedioate (3b)

Yield: 94%. Pale brownish oil. 1H NMR (400 MHz, CDCl3) δ: 8.60 (s, 1H, Py),
8.51 (dd, 3JH-H = 4.8 Hz, 4JH-H = 1.7 Hz, 1H, Py), 7.70 (d, 3JH-H = 8.0 Hz, 1H, Py),
7.21 (dd, 3JH-H = 8.0 Hz, 3JH-H = 4.8 Hz, 1H, Py), 4.93 (t, 3JH-F = 29.1 Hz, 1H, CH),
4.23−4.11 (m, 4H, 2 × CH2CH2(CH2)6CH3), 2.03 (m, 6H, 2 × COCH3), 1.70−1.63 (m, 4H,
2 × OCH2CH2(CH2)6CH3), 1.30−1.26 (m, 24H, 2 × OCH2CH2(CH2)6CH3), 0.87 (m, 6H,
2 × OCH2CH2(CH2)6CH3) ppm. 19F NMR (376 MHz, CDCl3) δ: −166.3 (d, 3JF-H = 29.1 Hz,
2F) ppm. 13C NMR (101 MHz, CDCl3) δ: 200.5 (dd, 2JC-F = 28.7 Hz, 4JC-F = 12.2 Hz,
2 × C(O)CH3), 164.7 (dd, 2JC-F = 25.0 Hz, 4JC-F = 15.6 Hz, 2 × C(O)OC9H19), 152.2 (s,
Py), 149.8 (s, Py), 139.2 (s, Py), 128.4 (s, Py), 123.2 (s, Py), 100.3 (dd, 1JC-F = 212.9 Hz,
3JC-F = 3.5 Hz, 2 × CF), 67.6 (s, 2 × OCH2CH2(CH2)6CH3), 49.9 (t, 2JC-F = 18.2 Hz, CH),
32.0 (s, 2 × CH2), 29.6 (s, 2 × CH2), 29.3 (s, 2 × CH2), 29.2 (s, 2 × CH2), 28.3 (s, 2 × CH2),
26.4 (s, 2 × CH3), 25.8 (s, 2 × CH2), 22.8 (s, 2 × CH2), 14.3 (s, 2 × CH3) ppm. IR νmax (film)
3181 (w), 2955 (m), 2928 (s), 2856 (m), 1761 (s), 1730 (s), 1576 (s) cm−1. UV-Vis λmax (EtOH):
210 (log ε 4.94), 260 (4.48) nm. HRMS TOF ESI+ of [C32H49F2NO6 + H]+ (m/z) 582.3621;
calcd: 582.3606.

3.4. General Procedure for the Synthesis of
3-(3,5-Difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium
Iodide 4a,b

To a stirred solution of 2,4-diacetyl-2,4-difluoro-3-(pyridin-3-yl) pentanedioates 3a,b
(1.0 mmol) in methyl ethyl ketone (MEK), methyl iodide (5.0 mmol) was added in portions
over 3 h, after which the reaction mixture was refluxed for 24 h. After overnight cooling of
the reaction mixture to + 4 ◦C, the formed precipitates were filtered off (for compound 4a).
In the case of product 4b, the solvent was evaporated, after which the residue was treated
with diethyl ether, and the formed precipitates were filtered off. The obtained products
were recrystallized from acetone.

3.5. 3-(3,5-Difluoro-3,5-bis((ethoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium
Iodide (4a)

Yield: 56%. Yellow solid; m.p. 153–154 ◦C (acetone). 1H NMR (400 MHz, CDCl3) δ:
9.65 (d, 3JH-H = 6.0 Hz, 1H, Py), 8.65 (m, 1H, Py), 8.38 (d, 3JH-H = 8.1 Hz, 1H, Py), 8.15 (dd,
3JH-H = 8.1 Hz, 3JH-H = 6.0 Hz, 1H, Py), 5.11 (t, 3JH-F = 24.7 Hz, 1H, CH), 4.70 (s, 3H, CH3),
4.34−4.20 (m, 4H, 2 × OCH2CH3), 2.27 (m, 6H, 2 × C(O)CH3), 1.30 (m, 6H, 2 × OCH2CH3)
ppm. 19F NMR (376 MHz, CDCl3) δ: −163.2 (d, 3JF-H = 24.7 Hz, 2F) ppm. 13C NMR
(101 MHz, CDCl3) δ: 200.7−200.2 (m, 2 × C(O)CH3), 163.9−163.5 (m, 2 × C(O)OCH2CH3),
146.3 (m, Py), 133.9 (s, Py), 127.9 (s, Py), 98.8 (dd, 1JC-F = 209.6 Hz, 3JC-F = 1.6 Hz, 2 × CF),
64.2 (s, 2 × OCH2CH3), 50.3 (s, CH3), 49.2 (t, 2JC-F = 19.2 Hz, CH), 27.0 (s, 2 × C(O)CH3),
13.9 (s, 2 × OCH2CH3) ppm. IR νmax (film) 3452 (b, w), 2995 (b, w), 2939 (b, w), 1756 (s),
1730 (m), 1636 (w), 1511 (w) cm−1. UV-Vis λmax (EtOH): 214 (log ε 5.40), 265 (4.85) nm.
HRMS TOF ESI+ of [C19H24F2NO6]+ (m/z) 400.1579; calcd: 400.1572.
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3.6. 3-(3,5-Difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium
Iodide (4b)

Yield: 43%. Pale yellow solid; m.p. 129–130 ◦C (acetone). 1H NMR (400 MHz, CDCl3)
δ: 9.66 (d, 3JH-H = 6.1 Hz, 1H, Py), 8.53 (m, 1H, Py), 8.37 (d, 3JH-H = 8.4 Hz, 1H, Py),
8.12 (dd, 3JH-H = 8.4 Hz, 3JH-H = 6.1 Hz, 1H, Py), 5.10 (t, 3JH-F = 25.0 Hz, 1H, CH), 4.68
(s, 3H, CH3), 4.26−4.13 (m, 4H, 2 × OCH2CH2(CH2)6CH3), 2.27 (m, 6H, 2 × COCH3),
1.66 (m, 4H, 2 × OCH2CH2(CH2)6CH3), 1.29−1.25 (m, 24H, 2 × OCH2CH2(CH2)6CH3),
0.87 (m, 6H, 2 × OCH2CH2(CH2)6CH3) ppm. 19F NMR (376 MHz, CDCl3) δ: −163.3 (d,
3JF-H = 25.0 Hz, 2F) ppm. 13C NMR (101 MHz, CDCl3) δ: 200.8−200.4 (m, 2 × C(O)CH3),
164.1−163.2 (m, 2 × C(O)OCH2CH2(CH2)6CH3), 146.4 (m, Py), 134.1 (s, Py), 128.0 (s, Py),
98.9 (dm, 1JC-F = 210.1 Hz, 2 × CF), 68.3 (s, 2 × OCH2CH2(CH2)6CH3), 50.2 (s, CH3),
49.3 (t, 2JC-F = 19.2 Hz, CH), 31.9 (s, 2 × CH2), 29.5 (s, 2 × CH2), 29.3 (s, 2 × CH2),
29.1 (s, 2 × CH2), 28.2 (s, 2 × CH2), 26.8 (s, 2 × C(O)CH3), 22.7 (s, 2 × CH2), 14.2 (s,
2 × OCH2CH2(CH2)6CH3) ppm. IR νmax (film) 3470 (b, w), 3033 (w), 2955 (m), 2924 (m),
2855 (m), 1756 (s), 1728 (m), 1510 (w) cm−1. UV-Vis λmax (EtOH): 214 (log ε 5.43), 265
(4.94) nm. HRMS TOF ESI+ of [C33H52F2NO6]+ (m/z) 596.3773; calcd: 596.3763.

3.7. Self-Assembling Properties by Dynamic Light Scattering Measurements

Samples of 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-
1-ium iodides 4a,b for dynamic light scattering (DLS) studies were prepared utilizing the
ethanol injection technique. A solution of compound 4a or compound 4b (300 µL, 1 mM
in EtOH 96%) was injected into 2.70 mL deionized water with maximum stirring (IKA
Vortex 2 (IKA, Staufen, Germany)) to give a final concentration of the compound—100 µM.
The sample was sonicated for 60 min at 50 ◦C using a bath-type sonicator (Cole Parmer
Ultrasonic Cleaner 8891CPX (Vernon Hills, IL, USA)).

The DLS measurements of the nanoparticles in aqueous solution were carried out on
a Zetasizer Nano ZSP (Malvern Panalytical Ltd., Malvern, UK) instrument with Malvern
Instruments Ltd. Software 8.01.4906, using the following specifications: medium—water;
refractive index—1.33; viscosity—0.8872 cP; temperature—25 ◦C; dielectric constant—
78.5; nanoparticles—liposomes; refractive index of materials—1.60; detection angle—173◦;
wavelength—633 nm. Data were analyzed using the multimodal number distribution
software that was included with the instrument. The measurements were performed in
triplicate in order to check their reproducibility. The measurements were performed in
triplicate in order to check their reproducibility. Example of DLS data for freshly prepared
nanoparticles of 4b see in the Supplementary Materials.

3.8. Statistical Analysis

Results are expressed as mean standard deviation (SD). All experiments were per-
formed in triplicate.

4. Conclusions

Synthesis of the ethyl or nonyl ester containing 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-
2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides 4a and 4b was performed after treat-
ment of the corresponding 2’,6’-dimethyl-1’,4’-dihydro-[3,4’-bipyridine]-3’,5’-dicarboxylates
with Selectfluor®, which gave dialkyl 2,4-diacetyl-2,4-difluoro-3-(pyridin-3-yl) pentane-
dioates. Quaternization of pyridine moiety of dialkyl 2,4-diacetyl-2,4-difluoro-3-(pyridin-3-
yl) pentanedioates with methyl iodide resulted in target compounds. The compounds were
characterized by fully characterized by 1H NMR, 19F NMR, 13C NMR, HRMS, IR and UV
data. DLS measurements demonstrated that 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-
2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide (4b) formed nanoparticles with the
average diameter around 370/430 nm and PDI values 0.3/0.4 for a freshly prepared
sample and sample after 5 days of storage, respectively. Meanwhile, a sample of 3-(3,5-
difluoro-3,5-bis((ethyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methyl-pyridin-1-ium iodide
(4a) formed particles with a PDI value of 1, which indicated the heterogeneity of the
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sample. It was demonstrated that variation in the N-alkylpyridinium chain length also
impacted the self-assembling properties of the molecules in the case of 3-(3,5-difluoro-3,5-
bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides.

Supplementary Materials: The following are available online. File S1. 1H NMR, 19F NMR, 13C
NMR and HRMS spectra of compounds 3a,b and 4a,b, example of DLS data for freshly prepared
nanoparticles of 4b.
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