
Citation: Sorrenti, S.; Dolcetti, V.;

Radzina, M.; Bellini, M.I.; Frezza, F.;

Munir, K.; Grani, G.; Durante, C.;

D’Andrea, V.; David, E.; et al.

Artificial Intelligence for Thyroid

Nodule Characterization: Where Are

We Standing? Cancers 2022, 14, 3357.

https://doi.org/10.3390/

cancers14143357

Academic Editors: Boban M. Erovic

and David Wong

Received: 9 May 2022

Accepted: 8 July 2022

Published: 10 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Artificial Intelligence for Thyroid Nodule Characterization:
Where Are We Standing?
Salvatore Sorrenti 1,† , Vincenzo Dolcetti 2,† , Maija Radzina 3,4 , Maria Irene Bellini 1,* , Fabrizio Frezza 5,6 ,
Khushboo Munir 5 , Giorgio Grani 7 , Cosimo Durante 7 , Vito D’Andrea 1 , Emanuele David 7,
Pietro Giorgio Calò 8 , Eleonora Lori 1 and Vito Cantisani 2

1 Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
salvatore.sorrenti@uniroma1.it (S.S.); vito.dandrea@uniroma1.it (V.D.); eleonora.lori@uniroma1.it (E.L.)

2 Department of Radiological, Anatomo-Pathological Sciences, “Sapienza” University of Rome,
00161 Rome, Italy; vincenzodolcetti@gmail.com (V.D.); vito.cantisani@uniroma1.it (V.C.)

3 Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia; mradzina@gmail.com
4 Medical Faculty, University of Latvia, Diagnostic Radiology Institute, Paula Stradina Clinical University

Hospital, LV-1007 Riga, Latvia
5 Department of Information Engineering, Electronics and Telecommunications, “Sapienza” University of Rome,

00184 Rome, Italy; fabrizio.frezza@uniroma1.it (F.F.); khushboo.muniruniroma1@gmail.com (K.M.)
6 Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Viale G.P. Usberti 181/A Sede

Scientifica di Ingegneria-Palazzina 3, 43124 Parma, Italy
7 Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;

giorgio.grani@uniroma1.it (G.G.); cosimo.durante@uniroma1.it (C.D.); emanuele.david@uniroma1.it (E.D.)
8 Department of Surgical Sciences, “Policlinico Universitario Duilio Casula”, University of Cagliari,

09042 Monserrato, Italy; pgcalo@unica.it
* Correspondence: mariairene.bellini@uniroma1.it
† These authors contributed equally to this work.

Simple Summary: In the present review, an up-to-date summary of the state of the art of artificial
intelligence (AI) implementation for thyroid nodule characterization and cancer is provided. The
opinion on the real effectiveness of AI systems remains controversial. Taking into consideration the
largest and most scientifically valid studies, it is possible to state that AI provides results that are
comparable or inferior to expert ultrasound specialists and radiologists. Promising data approve AI
as a support tool and simultaneously highlight the need for a radiologist supervisory framework for
AI provided results. Therefore, current solutions might be more suitable for educational purposes.

Abstract: Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence
(AI) that creates systems to set up logical connections using algorithms, and thus offers predictions
for complex data analysis. In the present review, an up-to-date summary of the current state of the art
regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is
provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for
example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly
limits inter-observer variability by using standardized mathematical algorithms. It could also be of
aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of
radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event
in thyroid nodule evaluation, but key issues for further implementation include integration with
radiologist expertise, impact on workflow and efficiency, and performance monitoring.

Keywords: artificial intelligence; machine learning; thyroid cancer

1. Introduction

For thyroid nodule management, the current diagnostic goal is early identification of
the malignant thyroid nodules: although the incidence of the disease is high (incidence rate
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of 3.4/100,000 in men and 11.5/100,000 in women [1]), more than half of newly diagnosed
thyroid cancers have a low risk of persistence or recurrence [2,3]. It is therefore necessary
to develop a diagnostic tool that improves interobserver agreement in the risk stratification
of thyroid nodules to provide an objective assessment of utility for the clinical and surgical
management phases that follow [4], given that even molecular biology is not specific and
does not accurately predict prognosis after surgery [5,6].

In the last two decades, medical imaging has grown exponentially, shifting from the
traditional use of images for visual interpretation to their conversion to quantitative features
that can be analyzed to extrapolate data and thus improve clinical decision-making. This
approach is usually called “Radiomics” [7,8]. Radiomics takes advantage from extraction
algorithms to derive several quantitative features from radiological images. Several recent
works underline how these data may be used by machine learning (ML) systems.

ML is an interdisciplinary sector in the subset of artificial intelligence (AI) dealing with
the creation of systems that set up logical connections via algorithms to make predictions
on data systems [9], Figure 1. The most interesting application of ML in the medical
field is the discernment of patterns based on the examination and analysis of extensive
datasets coming from various sources (clinical databases, laboratory results, and imaging
data) [10,11]. In particular, ML techniques are divided into supervised and unsupervised
learning methods. Supervised ML uses dataset inputs linked to dataset (labeled) outputs
to identify a function between the two, while unsupervised ML uses non-labeled input
datasets to identify and separate subsets with similar characteristics [12].
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Figure 1. Schematic definition of artificial intelligence, machine learning, deep learning, and convolu-
tional neural networks.

Deep learning (DL) is subset of ML approaches that uses neural networks arranged
in layers to extract higher level features from input data and automatically learn their
discriminative features, which allows approximation of non-linear relationships with
excellent performance.

These technologies may be finally transferred to software used directly by clinicians:
Computer Aided Diagnosis (CAD). Such software can be stand-alone or integrated in
sonographic equipment and help in the detection and evaluation of thyroid nodules,
one of the most common endocrine diseases, with incidental finding on ultrasound (US)
examination, especially in patients over 65 years of age [13].

2. Materials and Methods

The study only considered articles published in the last decade (2012–2022), since
most of the literature concerning AI application in radiology has undergone extensive
development only recently. Among these, only large retrospective and prospective studies,
systematic reviews, and meta-analyses were selected, as overall, they have greater statistical
significance. The research was carried out by interrogating the PubMed and Google Scholar
online databases using the Mesh terms “thyroid nodule and artificial intelligence”, with
the MESH terms present in the titles or abstracts. Only human studies were selected. The
search identified 166 studies from January 2012 to April 2022; of these, 63 were further
considered. After a full text read, the final studies included in the review were 30 in number;
they are all listed below in Table 1 [14–42].
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Table 1. Machine learning approaches for the evaluation of thyroid nodule sonographic images.

Reference Approach Source Data Method Details Performance

Zhu, et al., 2021 [14] Brief Efficient Thyroid Network
(BETNET; a CSS model)

gray-scale US images of 592 patients with
600 TNs (internal dataset)

187 patients with 200 TNs (external
validation dataset)

CNN approach with 24 layers: 13 convolution
layers, 5 pooling layers, 3 fully connected layers

with dropouts in between

AUC 0.970, 95% CI: 0.958–0.980 in the
independent validation cohort; similar to

two highly skilled radiologists
(0.940 and 0.953)

Peng, et al. 2021 [15] Deep-learning AI model (ThyNet)
18,049 US images of 8339 patients

(training set)
4305 images of 2775 patients (total test set)

combined architecture of three networks: ResNet,
ResNeXt, and DenseNet

ThyNet AUC (0.922; 95% CI 0.910–0.934]
higher than that of the radiologists
(0.839; CI 0.834–0.844]; p < 0.0001)

Bai, et al., 2021 [16] RS-Net evaluation AI model 13,984 thyroid US images CNN approach in which GoogLeNet is used as
the backbone network.

Accuracy, sensitivity, specificity, PPV,
and NPV were 88.0%, 98.1%, 79.1%,

80.5%, and 97.9%, comparable to that of
a senior radiologist

Yoon, et al., 2021 [17]

Texture analysis; least absolute
shrinkage and selection operator

(LASSO) logistic regression model
including clinical variables

155 US images of indeterminate thyroid
nodules in 154 patients.

Texture extraction using MATLAB 2019b.; the
LASSO model was used to choose the most
useful predictive features. Univariable and

multivariable logistic regression analyses were
performed to build malignancy

prediction models.

Integrated model AUC 0.839 vs. 0.583
(clinical variables only).

Liu, et al., 2021 [18] information fusion-based joint
convolutional neural network (IF-JCNN)

163 pairs of US images and raw
radiofrequency signals of thyroid nodules

IF-JCNN contains two branched CNNs for deep
feature extraction: one for US images

(14 convolutional layers and 3 fully connected
layers) and the other one for RF signals

(12 convolutional layers and 3 fully
connected layers)

The information carried by raw
radiofrequency signals and ultrasound

images for thyroid nodules
is complementary

IF-JCNN (both images and RF signals):
AUC 0.956 (95% CI 0.926–0.987)

Gomes Ataide, et al., 2020 [19] Feature extraction and Random
Forest classifier 99 original US images

Feature extraction using MATLAB 2018b;
Random Forest classifier (400 Decision Trees;

Criterion: Entropy, with Bootstrap)

RFC accuracy 99.3%, sensitivity 99.4%,
specificity 99.2%

Ye, et al., 2020 [20] Deep convolution neural network
(VGG-16)

US images of 1601 nodules (training set)
and test data including 209 nodules

(test set)

CNN approach based on VGG-19 (16 layers with
learnable weights, 13 convolutions and 3 fully

connected layers)

AUC 0.9157, comparable to the
experienced radiologist (0.8879; p > 0.1)

Wei, et al., 2020 [21] Ensemble deep learning model
(EDLC-TN) 25,509 thyroid US images

CNN model based on DenseNet and adopted as
a multistep cascade pathway for an ensemble

learning model with voting system.
AUC 0.941 (0.936–0.946)

Zhou, et al., 2020 [23]
CNN-based transfer learning method

named DLRT (deep-learning radiomics
of thyroid)

US images of 1750 thyroid nodules (from
1734 patients)

CNN-based architecture with transfer learning
strategy, with 4 hidden layers (3 transferred and
a fine-tuned layer) and a fully connected layer

AUC in the external cohort 0.97
(0.95–0.99). Both a senior and a junior US

radiologist had lower sensitivity and
specificity than DLRT.
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Table 1. Cont.

Reference Approach Source Data Method Details Performance

Nguyen, et al., 2020 [24]
Combination of multiple CNN models

(ResNet-based and
InceptionNet-based)

450 US thyroid nodule images
(from 298 patients)

Combination of ResNet50-based (50 layers) and
Inception-based (4 layers) networks followed by

global average pooling, batch normalization,
dropout, and dense layer

Accuracy: 92.05%

Wang, et al., 2020 [25]

Three CNN networks (feature extraction
network; attention-based feature

aggregation network;
classification network)

7803 US thyroid nodule images from
1046 examinations

CNN approach based on Inception-Resnet-v2
(164 layers)

Method AUC 0.9006
Both the accuracy and sensitivity are

significantly higher than sonographers.

Thomas, et al., 2020 [26] AIBx, AI model to risk stratify
thyroid nodules

2025 US images of 482 thyroid nodules
(internal dataset) and 103 nodules

(external dataset)
CNN approach based on ResNet 34 (34 layers)

Negative predictive value (NPV),
sensitivity, specificity, positive predictive
value (PPV), and accuracy of the image
similarity model were greater than other

cancer risk stratification systems.

Galimzianova, et al., 2020 [27] Feature extraction and regularized
logistic regression model

92 US images of 92 biopsy-confirmed
thyroid nodules

Feature extraction (219 for each nodule) and
elastic net regression analysis

Method AUC 0.828 (95% CI, 0.715–0.942),
greater than or comparable to that of the

expert classifiers

Nguyen, et al., 2019 [28]
AI-Based Thyroid Nodule Classification

Using Information from Spatial and
Frequency Domains

ultrasound thyroid images of 237 patients
(training dataset) and 61 patients

(test dataset).

CNN models (Resnet18, Resnet34, and Resnet50
were compared)

AI system with spatial domain based on
deep learning, and frequency domain
based on Fast Fourier transform (FFT)

outperforms the state-of-the-art methods
(especially CAD systems)

Buda, et al., 2019 [29] CNN
1377 US images of thyroid nodules in
1230 patients (training dataset) and

99 nodules (internal test dataset)

Custom CNN (six blocks with
3 × 3 convolutional filters, followed by Rectified
Linear Unit activation function and max pooling

layer with 2 × 2 kernels).

Method AUC: 0.87 [CI 0.76, 0.95] Three
ACR-TIRADS readers 0.91

Koh, et al., 2020 [30] Two individual CNNs compared with
experienced radiologist

15,375 US images of thyroid nodules
(training set), 634 (internal test), 1181

(external test set).

Four CNNs including two individual CNNs,
ResNet50 (50 layers) and InceptionResNetV2
(164 layers), and two classification ensembles,

AlexNet-GoogLeNet-SqueezeNet ensemble and
AlexNet-GoogLeNetSqueezeNet-

InceptionResNetv2
ensemble

CNNs AUC similar to experienced
radiologist AUC (0.87)

Wang, et al., 2019 [31] CNN compared with experienced
radiologist

351 US images with nodules and
213 images without nodules of 276 patients

CNN system in which the Resnet v2-50
(50 layers) network and YOLOv2 are integrated

CAD AUC 0.902 significantly higher
than radiologist AUC 0.859 (p = 0.0434)
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Table 1. Cont.

Reference Approach Source Data Method Details Performance

CAD systems

Sun, et al., 2020 [22]
Fused features combing the CNN-based

features (VGG F-based features) with
hand-crafted features

1037 US images of thyroid nodules
(internal dataset) and 550 images

(test dataset)

A support vector machine (SVM) is used for
classification and fused features which combined

the deep features extracted by a CNN with
hand-crafted features, such as the histogram of
oriented gradient (HOG), local binary patterns

(LBP), and scale invariant feature
transform (SIFT)

AUC of attending radiology lower than
system (0.819 vs. 0.881, p = 0.0003)

Han, et al., 2021 [32] S-Detect for Thyroid US images of 454 thyroid nodules from 372
consecutive patients

S-Detect for Thyroid is an AI-based CAD
software integrated in US equipment (Samsung

Medison Co., Seoul, South Korea)

The sensitivities of the CAD system did
not differ significantly from those of the
radiologist (all p > 0.05); the specificities
and accuracies were significantly lower

than those of the radiologist
(all p < 0.001).

Zhang, et al., 2020 [33] AI-SONIC; Demetics Medical
Technology Co., Zhejiang, China US images of 365 thyroid nodules

AI-SONIC is a CAD based on deep learning
(cascade CNN of two different CNN

architectures (one with 15 convolutional layers/2
pooling layers for segmentation, and the other

with 4 convolutional layers/4 pooling layers for
detection), developed by Demetics Medical

Technology Co., China

AUC CAD 0.788 vs. senior radiologist
0.906, p < 0.001). The use of CAD system
improved the diagnostic sensitivities of

both the senior and the
junior radiologists

Fresilli, et al., 2020 [4]
S-Detect for Thyroid compared with an
expert radiologist, a senior resident and

a medical student evaluation
US images of 107 thyroid nodules

S-Detect for Thyroid is an AI-based CAD
software integrated in US equipment (Samsung

Medison Co., Seoul, South Korea)

The CAD system and the expert
achieved similar values of a sensitivity
and specificity (about 70%–87.5%). The
specificity achieved by the student was

significantly lower (76.25%).

Jin, et al., 2020 [34] CAD system based on a modified,
CNN-based TIRADS, evaluated by

US images of 789 thyroid nodules from
695 patients

CAD system based
on the ACR TI-RADS

automatic scoring using a CNN
(no details provided).

AUC CAD 0.87
AUC Junior radiologist 0.73

(Junion + CAD): 0.83
AUC Senior radiologist 0.91

Xia, et al., 2019 [35] S-Detect for Thyroid US images of 180 thyroid nodules in
171 consecutive patients

S-Detect for Thyroid is an AI-based CAD
software integrated in US equipment (Samsung

Medison Co., Seoul, South Korea)

AUC CADs 0.659 (0.577–0.740)
AUC radiologist 0.823 (0.758–0.887)

Jin, et al., 2019 [36] AmCad; AmCad BioMed,
Taipei City, Taiwan

33 images from 33 patients read by
81 radiologists

Commercial standalone CAD software: AmCad
(version: Shanghai Sixth People’s Hospital;

AmCad BioMed, Taipei City, Taiwan)

CAD AUC 0.985 (0.881–1.00) 177
contestants AUC 0.659 (0.645–0.673)

(p < 0.01)
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Table 1. Cont.

Reference Approach Source Data Method Details Performance

Kim, et al., 2019 [37] S-Detect for Thyroid 1 and 2 US images of 218 thyroid nodules from
106 consecutive patients

S-Detect for Thyroid is an AI-based CAD
software integrated in US equipment (Samsung

Medison Co., Seoul, South Korea)

AUC:
radiologist 0.905 (95% CI, 0.859–0.941)
S-Detect 1–assisted radiologist 0.865

(0.812–0.907)
S-Detect 1 0.814 (0.756–0.863) S-Detect

2-assisted radiologist 0.802 (0.743–0.853)
S-Detect 2 0.748 (0.685–0.804)

Chi, et al., 2017 [38] CAD system for thyroid nodule
Database 1 includes 428 images in total
while database 2 includes 164 images

in total

CAD based on fine tuning of GoogLeNet CNN
(22 convolutional layers including

9 inception modules)

CAD AUC 0.9920
Experienced radiologist AUC 0.9135

Zhao, et al., 2019 [39] CAD system for thyroid nodule
systematic review and meta-analysis

Meta-analysis of 5 studies with 723 thyroid
nodules from 536 patients

4 studies with S-Detect; 1 study with internal
CAD based on CNN.

CAD AUC 0.90 (95% CI 0.87–0.92)
Experienced radiologist AUC 0.96

(95% CI 0.94–0.97)

AI-modified TIRADS

Watkins, et al., 2021 [40] AI-TIRADS US images of 218 nodules from
212 patients

The AI-TIRADS is an optimization of ACR
TIRADS generated by “genetic algorithms”, a

subgroup of AI methods that focus on algorithms
inspired by “natural selection”.

Sensitivity 93.44%
Specificity 45.71%

BTA, ACR-TIRADS, and AI-TIRADS
have comparable diagnostic

performance

Wang, et al., 2020 [41] Google AutoML for automated nodule
identification and risk stratification

US images of 252 nodules from
249 patients.

Google AutoML algorithm (AutoML Vision;
Google LLC), with cloud computing and transfer

learning

Accuracy of 68.7 ± 7.4% of
AI-integrated TIRADS

Wildman-Tobriner, et al.,
2010 [42] AI-TIRADS

US images of 1425 biopsy-proven thyroid
nodules from 1264 consecutive patients

(training set); 100 nodules (test set)

The AI-TIRADS is an optimization of ACR
TIRADS generated by “genetic algorithms”, a

subgroup of AI methods that focus on algorithms
inspired by “natural selection”.

ACR TI-RADS AUC 0.91
AI TI-RADS AUC 0.93

(with slight improvement of specificity
and ease of use)

Abbreviations: ACR: American College of Radiology; AI: artificial intelligence; AIBx: AI model to risk stratify thyroid nodules; AUC: area under the curve; AutoML: Auto machine
learning; BETNET: brief efficient thyroid network; CAD: computer-aided diagnosis; CI: confidence interval; CNN: convolution neural network; CSS: cascading style sheets; DLRT:
deep-learning radiomics of thyroid; EDLC-TN: ensemble deep-learning classification model for thyroid nodules; FFT: Fast Fourier transform; IF-JCNN: information fusion-based joint
convolutional neural network; LASSO: Least Absolute Shrinkage and Selection Operator; NPV: negative predictive value; PPV: positive predictive value; RF: radiofrequency; RFC:
Random Forest classifier; RS-NET: regression–segmentation network; US: ultrasound; VGG: Visual Geometry Group.
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3. Results
3.1. Radiomics

Medical radiomics employs high-throughput automated extraction algorithms to
obtain a large number of quantitative characteristics from image datasets and is able to
identify measurable information that clinical evaluation alone cannot detect [12,43].

Two of the first radiomics approaches in thyroid nodule characterization were texture
analysis and US echo-intensity evaluation [44]. The latter is affected by several factors,
such as gain, dynamics, operator dependency, and probe variability, as well as by the
US equipment performance. The diagnostic value of echo-intensity obtained by direct
measurement is limited; however, the echo intensity of the nodule and surrounding tissues
increases or decreases simultaneously when these factors alternate [45]. Therefore, the echo
intensity of the thyroid nodule can be indirectly quantified by measuring the grayscale
ratio of the nodule to the surrounding thyroid tissues, which is more objective than the
subjective assessment [44–46]. In a pivotal single-center study, it was demonstrated that
the ratio was significantly lower in malignant nodules compared to benign ones [46], while
the ratio of the nodule to the strap muscle was influenced by gender and less clinically
discriminant. The inter-rater agreement was fair (k = 0.40) for hypo-echogenicity, whereas
it was substantial for the ratio (k = 0.74), confirming the reduction in variability. This
approach was subsequently replicated by other groups, showing that, as suggested, the
ratio may distinguish anechoic and markedly hypoechoic nodules [47], and if it is applied
to different nodule sizes [48], software can differentiate between benign and malignant
nodules [49], even in different settings [45]. One of the most significant examples is the
multicenter study conducted by Liang et al., in which a radiomic score was compared
with a score based on the ACR TI-RADS criteria (which take into account, in addition
to the difference in echogenicity, characteristics such as composition, shape, margin, and
echogenic foci), showing a close correlation between the latter and the assessment carried
out by the AI [50]. Radiomics approaches using grayscale histogram and other more
complex image analyses were furthermore proved to predict BRAF mutational status [51],
lateral lymph node metastasis [52], and a disease-free survival term.

3.2. Deep Learning and Machine Learning and TIRADS Systems

Deep learning (DL) is one ML method that relies on networks of computational units
(i.e., neural units arranged in layers that gradually extract higher-level features from input
data and automatically learn discriminative features from data) that allow approximation of
complex non-linear relationships with outstanding performance. DL can achieve diagnosis
automation, avoiding human intervention. In medical applications, DL algorithms are
implemented for detection and characterization of tissue lesions as well as for the analysis
of disease progression [12].

AI has already been widely used in thyroid imaging [11,53]. Several AI and ML
approaches were implemented for the classification of thyroid nodules and the early
detection of cancers, including modifications to the American College of Radiology Thyroid
Imaging Reporting and Data System (TIRADS) systems that may be manually applied.
Furthermore, a convolutional neural-network-based CAD program may help in predicting
the BRAFV600E genetic mutation [54–56].

Use of the ML approach may also identify nodules with high-risk mutations on molecular
testing [57]. Another important advantage of AI systems is the possibility to obtain more
systematized results, which could reduce inter-observer variability and tend to standardize
the results obtained through the application of different TIRADS classification systems, whose
major limit to date is represented by highly variable predictive capacity, high heterogeneity in
grading, and the absence of reliable data in small nodules (<10 mm) [3,58,59] (Figures 2 and 3).
A recent TIRADS model showed higher accuracy than a model based on training according
to the nodule status, i.e., benign and malignant; additionally, the specificity of the above-
mentioned model was higher than that of both experienced and junior radiologists [60].



Cancers 2022, 14, 3357 8 of 15

Comparisons between different imaging modalities are represented in Figures 2 and 3,
where a DL-based software confirms the suspect based on B-mode US imaging.

Cancers 2022, 14, x  11 of 18 
 

 

higher accuracy than a model based on training according to the nodule status, i.e., benign 
and malignant; additionally, the specificity of the above-mentioned model was higher 
than that of both experienced and junior radiologists [60]. Comparisons between different 
imaging modalities are represented in Figures 2 and 3, where a DL-based software 
confirms the suspect based on B-mode US imaging. 

 
Figure 2. Histologically proved papillary carcinoma. (a,b) At B-mode, the nodule appears markedly 
hypoechoic. (c) At ColorDoppler-US evaluation, it shows type III vascular pattern (intra- and 
perinodular). (d) The evaluation with S-detect software (Samsung Medison, Co., Ltd., Seoul, Korea) 
confirms the high degree of suspicion (K-TIRADS 5). 

Figure 2. Histologically proved papillary carcinoma. (a,b) At B-mode, the nodule appears markedly
hypoechoic. (c) At ColorDoppler-US evaluation, it shows type III vascular pattern (intra- and
perinodular). (d) The evaluation with S-detect software (Samsung Medison, Co., Ltd., Seoul, Korea)
confirms the high degree of suspicion (K-TIRADS 5).

3.3. Computer-Assisted Diagnosis (CAD)

These approaches may produce new knowledge by identifying new patterns and fea-
tures to be applied in a more traditional way and generating computer-assisted diagnosis
(CAD) systems; i.e., software able to analyze data through the application of machine-
learning principles to aid clinicians for a “second opinion” provision. AI-based thyroid
CADs may further improve diagnostic performance and reliability, reaching an accuracy
similar to that obtained by an expert radiologist [10,11], with potential implication in train-
ing of less-experienced operators and reduction of intra- and inter-observer variability [11].
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Figure 3. Histologically proved follicular hyperplasia. (a) The nodule appears iso-hypoechoic at B-
mode. (b) At ColorDoppler-US evaluation, it shows type III vascular pattern (intra- and perinodular)
(c) At S-detect software, the nodule is classified as low degree of suspicion (K-TIRADS 3).

CAD-systems are already available as commercial applications or where embedded in
US equipment. A recent meta-analysis [61] confirmed that their performance in evaluating
malignant thyroid nodules is comparable to radiologists. Specifically, the sensitivity was
reported to be like that of experienced radiologists, while specificity and diagnostic odds
ratio were reduced [39]. While these systems did not outperform experienced specialists,
they are able to guide the training of less-skilled examiners, thus reducing variability when
clinician’s judgements show significant disagreement. However, it is difficult to eliminate
all possible sources of inter-observer variability: it is in fact possible that radiologists with
different degrees of experience select images with more or less relevant characteristics of
suspicion. The homogeneity of the image segmentation process also plays a fundamental
role in reducing the impact of selection bias. The segmentation process in fact involves a
manual selection of the area of interest (which should correspond to the nodule), but in
this phase it is possible that portions of the slide that contain non-informative areas are
selected, compromising the training process of the AI system. To try to solve the problem,
some studies have adopted a two-step fully automated classification system, specifically
trained both to autonomously select the area of interest and to predict the final pathology
of the specific selected area [62]

Furthermore, the models generated by images obtained from different machines may
not be universally generalizable, which can determine limits in the sampling phases and
in the standardization of software. This therefore requires an accurate evaluation and
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selection phase prior to the adoption of an AI system in any case [11]. Table 2 summarizes
main advantages and disadvantages of artificial intelligence over conventional imaging.

Table 2. Advantages and disadvantages of artificial intelligence over conventional imaging.

Main Advantages of AI Main Disadvantages of AI

It is based on models, for the interpretation of thyroid nodules,
that are able to match the performance characteristics of
radiologists and pathologists

Too little experience at the moment; prospective multicenter
trials on a wide population will be needed to improve the utility
of artificial intelligence for the interpretation of thyroid nodules

Usable software for thyroid nodule risk stratification are already
commercially available

4. Discussion

The TIRADS system was developed to improve the diagnostic accuracy of conven-
tional US in thyroid nodule characterization [63]. However, its clinical use is still very
limited and diverse; in particular, there are various types of TIRADS, and their application
is very subjective; therefore, it is significantly affected by inter-observer variability [64].

AI could increase US accuracy and significantly limit inter-observer variability by
using standardized mathematical algorithms. In the world of DL, many authors are fo-
cusing on convolutional neural networks (CNNs), introduced by LeCun [65,66]. Before
their diagnostic accuracy can be assessed, CNNs are trained by subjecting them to specific
algorithm-segmented US images of thyroid nodules with known histological diagnosis;
at the end of the learning phase the CNNs are able to analyze the captures of thyroid
nodules and to suggest a risk stratification of these nodules in correlation to a specific
TI-RADS level [16]. Most of the existing literature evaluates the diagnostic accuracy of
various types of properly trained convolutional neural networks by comparing them
to those of radiologists with variable degrees of experience. All the evaluated studies
showed significant high overall diagnostic accuracy of CNNs, above 90%, which does not
differ much from that of expert radiologists. In particular, most of the studies demon-
strate a comparable diagnostic accuracy, such as Watkins et al., Bai et al., Ye et al., Koh
et al., and Fresilli et al. [4,16,20,30,40]. Approximately the same number of studies demon-
strate a higher diagnostic accuracy of AI systems compared to that of expert radiologists
(e.g., Sun et al., Peng et al., and Zhou et al.) [15,22,23], or vice versa, a superiority of
diagnostic accuracy by expert radiologists compared to that of AI systems (e.g., Zhang
et al. and Han et al.) [32,33]. Despite controversial results, the meta-analysis conducted
by Zhao et al. suggests that the sensitivity of the CAD system is like that of experienced
radiologists, but the CAD system has lower specificity and diagnostic odds ratio than
experienced radiologists [39].

On the other hand, almost all the studies included in this review show that CNNs
obtain a better result than junior radiologists with less than 5 years of experience in
US evaluation of thyroid nodules [4,23,34,40], especially with regards to specificity [60].
These studies therefore agree in suggesting that CAD systems may be an effective support
tool to increase the diagnostic efficacy of thyroid nodule evaluations by less-experienced
radiologists [25]. Furthermore, some studies, such as the one by Zhao et al., show that the
diagnostic accuracy of senior radiologists assisted by CAD systems is higher than that of
radiologists alone and CAD systems alone [39].

It is therefore not yet clear from the literature analysis which of the specific AI sys-
tems has the best diagnostic accuracy. Wang et al. compare the effectiveness of only
few CNNs [25], while most studies analyze specific systems individually, showing high
specificity—especially if they are based on TIRADS system algorithm—rather than differen-
tiation among benign and malignant nodules with surgical histopathological reference [60].
In absolute terms, the CAD system used by Zhou et al., a CNN-based transfer learning
method named DLRT (deep-learning radiomics of thyroid), appears to be one of those with
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greater diagnostic accuracy (AUC 0.97) [23], although this type of comparison between AI
systems has no real statistical significance as they were analyzed on retrospective datasets.

In addition, a variety of AI technologies have been evaluated on thyroid cytology
specimens. Unfortunately, no application has been demonstrated to be robust enough for
clinical use in FNAB result analysis, an issue which is related to the multi-layered, multi-
dimensional, complex interpretation process and the lack of standardized algorithms [66,67].
However, Ippolito et al. [68] show collaborative data between cytology and US; they
integrated microscopic pathology characteristics, clinical data, and imaging features into a
combined algorithm to triage indeterminate and follicular lesions into high- or low-risk
categories using a CNN framework that demonstrated a sensitivity of 85.7% and low
specificity of 58.8%. As an element of evidence that emerged from the present review, key
issues in AI implementation include integration with radiologist interpretation, impact
on workflow and efficiency, and performance monitoring. This can be translated into an
automated structured report for integration into a radiology report. Sensitivity settings for
different features can be adjusted and customized; validation by an experienced radiologist
co-reader is warranted [69].

AI tools may be useful in practice settings with limited subspeciality expertise: using
AI solutions in the settings with minimal radiology support and high negative predictive
value may provide comfort for clinicians with no need for follow-up of benign findings,
although this should be addressed with caution. Depending on the institutional cohorts,
AI results cannot be generalized, as it is assumed that AI would misperform in specialized
centers with higher malignancy rates in comparison to the average population [69]. In terms
of legal frame, AI-generated conclusions being reviewed by board-certified radiologists or
US practitioners, regardless of their specialty, is mandatory. Several authors suggest use of
AI results as second-opinion, although this has a negative impact on workflow speed [10,
11,69]. US practices, in conjunction with vendors, should implement AI performance and
quality control protocols in order to assess the reliability of the tool.

Finally, a limitation of AI should be noted: thyroid US scanning includes compre-
hensive neck soft tissue assessment, including lymph nodes and parathyroid glands, but
currently, AI solutions address only one aspect of this complex examination.

5. Conclusions

The introduction of AI was a revolutionary event in thyroid nodule assessment. Not only
ultrasound, but also other imaging methods such as CT and MRI, use it effectively [70–72]. In
some cases, there is even the possibility to effectively predict the immunohistochemistry
of the thyroid nodule simply through the evaluation of segmented image datasets by AI
systems [73]. Moreover, the use of CAD in daily clinical practice does not have a significant
impact on workflow, as it increases the examination time by approximately 2–3 min [4]

However, the real effectiveness of AI systems remains controversial; taking into con-
sideration the largest and most scientifically valid studies, it is possible to state that AI
provides results that are comparable or in any case inferior to that of expert radiologists.
Furthermore, it is necessary to consider the relevant heterogeneity of sensitivity and speci-
ficity between studies, due to the diversity in methodology and to the differences among
patients included [39].

AI systems still have a long way to go to replace experienced radiologists in the
process of improving accuracy and reducing time consumption, and larger studies meeting
uniformity criteria are necessary to evaluate the diagnostic performance of these systems
further. Nevertheless, the current CAD systems offer support for radiologists in thyroid
nodule assessment and increase the overall accuracy in routine thyroid US [10,11,39].

AI solutions with CAD should be implemented in the teaching process of junior
specialists. Deep-learning algorithms would benefit from follow-up US imaging data of the
same thyroid nodules in combination with TIRADS classification, rather than dichotomous
prediction, to increase their repeatability, reliability, and accuracy.
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Regarding the legal frame, AI-generated conclusions should be reviewed by board-
certified radiologists or US practitioners as mandatory practice, such that AI results may be
provided only as a second opinion.
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