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Abstract: The sustainability of energy systems is increasingly assessed for development of more
resilient, greener district heating (DH) systems. That requires compiling technological, environ-
mental, and economic indicators in a social, political, and institutional context. This work investi-
gates DH system sustainability analysis by five frequently applied multi-criteria decision analysis
(MCDA) methods—WSM, TOPSIS, PROMETHEE, ELECTRE and DEA. To compare the sustainabil-
ity assessment results, a selection of 8 criteria describing 12 DH companies (DHC) was examined.
Sensitivity analysis was performed to determine the most credible MCDA method. Criteria weights
were changed: (1) individually for evaluation of the range of stability for alternatives (score of
DHC performance); (2) individually by a fixed value to compare how each criterion weight change
affected the average score of a result; and (3) to compare the AHP weighting method to an equal
weight scenario. The results of sensitivity analysis along with literature investigation shows that all
methods are suitable for sustainability analyses of DH systems while also having differences in the
calculation process and in the interpretation of results. The generalized algorithm for sustainability
analysis in the energy sector outlined in this study along with the documented features of the main
MCDA methods can be used as a guide for future assessment of energy systems by researchers and
industry professionals.

Keywords: multi-criteria decision analysis; district heating; sustainability assessment; sensitivity
analysis of weight; WSM; TOPSIS; PROMETHEE; ELECTRE; DEA

1. Introduction

Transition toward sustainable energy systems necessitate the increased proportional
use of renewable resources, as well as the modernization and the development of new
and existing district heating (DH) networks that are more efficient, to combat climate
change. This is supported by the United Nations Sustainable Development Goals (SDGs),
in particular Goal 7 on affordable and clean energy and its sub-targets, to increase the share
of renewable energy, improve energy efficiency, and facilitate cooperation for research on
clean energy and technologies [1]. A sustainability assessment of existing energy systems
therefore provides an insight into the current state of DH in a region or sector, and it
facilitates decision-making in development and in investment. To impartially perform
these evaluations, multi-criteria decision analysis (MCDA) is often employed.

A family of mathematical methods, MCDA can provide decision support for complex
cases with opposing objectives, different data types, and high variability [2]. The use of
these tools becomes necessary in the selection of heating systems that are hard to compare
based on a diverse set of sustainability indicators [3].

Most literature highlight MCDA methods without any justification for their selection.
Since the goal of using MCDA is minimization of subjectivity in decision analysis and differ-
ent MCDA methods can by design lead to different outcomes [4], the method choice should
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also be justified. No consensus on the best-performing MCDA method exists, so decision-
makers often make their selection based on previous experience or recommendations.

In the field of DH, MCDA and other decision-making methods can be used to identify
the best technological solution [5], the most sustainable scenario for development of a DH
system [6] or DH companies (DHC) [7], the best technological solution [8], and the environ-
mental sustainability of countries [9]. As a result, MCDA is used for decision-making at
different levels of DH systems (separate area, DH company, DH system of a city or munici-
pality, national DH policy) (Figure 1). The sustainability assessment of an energy system
should refer to the interplay between energy security, energy equity, and environmental
sustainability. These three pillars are the energy trilemma, and they are to some extent in
competition with each other. This leads to the need for precisely stated questions and a
clearly defined purpose for the application of the MCDA. Sustainable and efficient district
heating is one of the components of the EU smart city concept [10]. For instance, industrial
waste/excess heat integration in district heating can lead to a reduction in CO2 emissions
(decarbonization) and in production costs [11,12]. In one of the projects related to the smart
cities concept, cities were also compared using criteria from disciplines such as the smart
economy, mobility, the environment, people, living, and governance [13].
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Figure 1. Schematic representation of multi-level DH system analysis by using MCDA. 
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The transition towards fourth generation DH (4GDH) is closely related to the intro-
duction of renewable energy sources (RES) into a DH system and considerable reduction of
CO2 emissions [14]. Similarly, fifth generation DH (5GDH) is proposed to lower network
temperatures and to develop joint centralized heating and cooling while simultaneously
contributing to decarbonization efforts [15]. Each development alternative requires funding
and/or application of policy instruments (taxes, subsidies). Thus, MCDA is executed
by comprising several criteria: technological, energy, economic, environmental, social,
institutional and/or political, and governance [2]. More often, quantitative criteria are
selected for the analysis, while qualitative criteria can also be used.

The structure of a DH system includes three main components: heat sources, trans-
mission and distribution pipelines, and heat consumers. The parameters of each DH
system component may be included in the initial matrix for the sustainability assessment.
For example, increasing the impact of an intelligent grid control system could increase
the efficiency of the DH system and reduce emissions, improving the sustainability of the
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DH system [16]. Therefore, the transmission system parameters can be included in the
assessment. An MCDA can be applied to assess the sustainability of the whole system
or depending on the selected system’s boundary (Figure 1). For instance, multi-objective
optimization of a novel air-source absorption heat pump system as the heat source for a
residential DH area has been conducted based on MCDA decision-making [17].

Several systematic literature reviews comprehensively explain the application of
different MCDA methods for the integration of RES into the energy supply, considering
technological, economic, environmental, social, and institutional criteria (see e.g., [8,11]).
However, studies exploring the practical application of different MCDA methods that also
perform sensitivity analysis to assess the robustness of results are rare. Implementation of
different MCDA methods can often produce different results [3] and the use of multiple
methods can therefore be used to gain confidence in results. Meanwhile, after studying
343 MCDA articles that address decision-making in the field of sustainable development.
Kandakoglu et al. (2019) found that only 21% of articles used sensitivity analysis to assess
weight value uncertainty or overall MCDA model imprecisions [18].

In this study, we aim to look at the most widespread decision-making methods for ev-
ery step of general sustainability analysis and to identify the main strengths and weaknesses
within each one of the methods in the DH sector.

2. Materials and Methods

An algorithm applied in this study for comparing MCDA methods is presented in
Figure 2. The first part of our methodology consists of a literature review, selection of
MCDA methods, and characterization of the selected case study. In the second part, criteria
weighting, data normalization, and alternative ranking via MCDA methods is conducted.
The third part is sensitivity analysis for determination of the best-performing and the most
credible MCDA method(s) for DH-related studies.
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The methods selected for comparison are the analytic hierarchy process (AHP),
weighted sum method (WSM), technique for order of preference by similarity to ideal
solution (TOPSIS), elimination and choice expressing reality (ELECTRE), preference rank-
ing organization method for enrichment evaluation (PROMETHEE), and data envelopment
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analysis (DEA), as they are among the most widely used MCDA methods in studies related
to DH and in the closely related field of renewable energy [19]. As AHP is more fre-
quently used in criteria weighting than in alternative ranking, we look at it separately from
other ranking methods. Meanwhile, TOPSIS along with DEA seem to be the most widely
used MCDA methods in the published scientific articles about DH, with PROMETHEE or
ELECTRE being less often applied [7,17,20–56] (see Supplementary Material).

Each of the selected methods was applied to a case study of 12 Latvian district heating
companies (DHC). Accordingly, a set of criteria was selected, and the corresponding weights
were assigned based on the AHP method, while ranking of the DHCs was performed with
WSM, TOPSIS, ELECTRE, PROMETHEE, and DEA. Sensitivity analysis was conducted to
test the robustness of the results and to provide extra insight into each method’s constructed
behavior. Finally, the results of an MCDA methods assessment and comparison were
interpreted, and their flaws and strengths were summarized to conclude on the use of
MCDA for sustainability assessments of DH systems.

2.1. Criteria Selection

Accurate criteria selection is a vital part of sustainability analysis. Criteria must be
relevant to the field and encompass technical, economic, and environmental indicators to
accurately portray the efficiency, cost, and sustainability of each DH system. Criteria should
also be independent of each other to minimize redundancy and to simplify of the model.

The targets set by the European Union for the decarbonization of the energy system are
closely linked to the DH system transition toward 4GDH and 5GDH. Society is increasingly
involved in the transition process. Consumers engage in heat and power generation
to become prosumers [57]. Sometimes the public is not sufficiently informed about the
potential of low-emission technology; and, as a result, these non-technical factors become
important drivers and constraints on the path to decarbonization [58]. For this reason,
social, political, and institutional criteria should be included in DH development models
alongside standard technical, economic, and environmental indicators.

The number of selected criteria is an important constituent of the MCDA. Logically, the
more criteria there are, the less significant each becomes in the MCDA model. Conversely, having
only a couple of criteria cannot fully encompass the characteristics of the various alternatives.

The most widespread method of criteria selection in renewable energy research is a
review of the literature, where previous relevant research is assessed to collect a list of
the most appropriate criteria for the occasion [19]. That can be done by authors based on
their experience and research, or by a set protocol to be more methodical. No widespread
methodology for criteria selection based on literature review exists and an intuitive selection
of criteria can bring additional subjectivity in the process.

In the field of renewable energy, the Delphi method has been used to determine cri-
teria for MCDA [59,60]. The Delphi method is a method for collection and interpretation
of expert judgments through multiple rounds of sequential and evolving questionnaires.
The traditional Delphi method consists of multiple iterations of data collection that build
upon previously amassed information to achieve consensus among the interviewees [61].
The first round is equivalent to an anonymous brainstorming session. The second question-
naire asks experts to consider and rate every response that has been compiled by researchers
from the first round. The third and the following rounds are usually performed until a
consensus on rating/ranking is reached. This method requires substantial planning and
curating from the researcher’s/consultant’s side. The lengthy multi-step consulting process
may also be excessive for some applications for each DHC to quantitatively represent
each criterion.

For this study, 8 criteria were selected for comparison of the selected 12 DHCs.
The criteria selection was based on a literature review and consultations with a panel
of experts. Some criteria were considered as minimizable and some as maximizable (see
Table 1). The type of a criterion (min or max) depended on the assessment’s target [62].



Energies 2022, 15, 2411 5 of 23

Table 1. Decision matrix for 12 Latvian DHC *.

Criterion

Environmental Economic Technological Institutional

CO2
Emissions,
kgCO2/MWh

Share of
RES, %

Heat Tariff,
€/MWh

Installed
Capacity

Utilization
Rate, %

Heat
Losses,

%

Average
Supply

Water Tem-
perature,
◦C

Produced
Heat in
Cogene-
Ration,

%

Heat
Consumption
of Buildings,

kWh/m2

Criterion
Type min max min max min min max min

DHC 1 223.71 0.04 52.14 21.74 17.14 120.00 22.39 189.02
DHC 2 209.32 1.44 50.53 10.23 16.46 120.00 27.84 176.28
DHC 3 181.82 0.13 58.94 15.58 10.00 90.00 21.41 168.97
DHC 4 144.33 30.83 44.39 16.66 9.55 120.00 18.65 162.34
DHC 5 84.88 61.97 54.95 15.18 15.92 90.00 46.62 136.00
DHC 6 44.41 79.38 60.70 4.85 14.40 100.00 1.36 151.40
DHC 7 55.08 80.00 55.24 23.73 8.76 63.68 0.00 156.85
DHC 8 45.86 80.04 51.73 28.27 16.83 75.95 97.37 143.79
DHC 9 49.25 87.10 54.90 19.91 9.20 90.00 5.70 120.18
DHC 10 3.13 99.00 49.80 30.48 18.54 100.00 49.09 129.03
DHC 11 0.00 100.00 61.55 93.88 13.09 90.00 0.00 162.47
DHC 12 0.00 100.00 53.49 92.59 24.78 90.00 100.00 168.87

Criterion
weight, % 14.54 11.59 17.06 14.12 16.90 7.18 6.00 12.60

* Green value—alternative with the highest value for the given criterion; red value—alternative with the lowest
value for the given criterion.

The goal of applying MCDA was to determine the sustainability rating of the 12 Lat-
vian DHC based on the concept of the 4GDH by considering technological, economic,
environmental, and institutional criteria. The study includes two environmental criteria
(CO2 emissions and the share of RES), one economic criterion (heat tariff that charac-
terizes the economic efficiency of DHS operation), four technological criteria (installed
capacity utilization rate, heat losses in DH transmission system, average supply water
temperature, produced heat in cogeneration), and one institutional criterion (heat consump-
tion of buildings). The technological criteria partially overlap with or relate to economic
and environmental performance of a DH company. Low-temperature DH is one of the
4GDH components as lower heat carrier supply temperature reduces heat losses in net-
works, which in turn impacts fuel consumption and, as a result, the CO2 emissions of
the DH system. The installed capacity utilization rate demonstrates how efficiently the
installed capacity is used and it ultimately determines the cost-effectiveness of the DH
system. The heat tariff expresses, how efficient and affordable the DH system is for heat
consumers. Meanwhile, the institutional criterion—heat consumption of buildings—is
one of the most important indicators, defined in Directive 2012/27/EU on energy effi-
ciency [63]. Lower heat consumption should ensure decarbonization of the building stock
by 2050. The social and political aspects of the model overlap with the economic and the
institutional criteria, and they are therefore not partitioned.

2.2. Criteria Weighting

Criteria weighting is an integral part of any MCDA method. During the weighting
procedure, values are assigned to the selected criteria to represent their relative importance.
The simplest weighting method requires no additional input from the decision-makers as
every criterion is assigned the same weight. That can be done in cases where all criteria are
assumed to have very similar importance or when there is no input from decision-makers
and not enough information available [2].

In case of differing relative importance of each criterion, rank-order weighting methods
are used. The entropy weight method is an objective rank-order weighting technique that
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draws from information theory to calculate each criterions’ entropy—the uncertainty of
it with respect to input data. That has the advantage of incorporating extra information
in the model, as the stochasticity of the input data is a source of uncertainty in MCDA
models [64].

An objective rank-order weighting can also be done by assigning weights based on
statistical data in a way that adds information to the model without the subjectivity of
experts [62].

The AHP method uses pair-wise comparisons to determine the importance of each
criterion, i.e., its relative weight. The comparisons are quantified and formed into a matrix
from which the criteria weights are calculated. Traditionally, a numerical scale ranging
from 1 to 9 is used to appraise the comparison [65]. Experts’ comparisons are collected via
questionnaires and then aggregated to come to a set of criteria weights. A consistency ratio
is also calculated to assess the credibility of the results.

Additionally, the AHP procedure was applied to the selected case study of 12 DHCs.
The weights were based on a survey of DH system’s stakeholders, and they reflect the
stakeholders’ opinion about the importance of the criteria toward sustainability of the DH
system. The obtained weights are presented in Table 1.

Pairwise comparisons of the 8 selected criteria were quantified via the 1–9 Saaty scale.
The procedure along with the resulting criteria ranking and weighting was performed on a
free-access software (AHP OS) [66].

The criterion weights must be normalized before application by Equation (1):

∑n
j=1 ωj = 1, (1)

where wj—weight of criterion j; j = 1, 2, . . . , n. Thus, the sum of all weights must be equal
to 1 or to 100%.

2.3. Data Normalization

Data can come in many forms. Normalization of data is a prerequisite for some
MCDA since it allows for comparison outside the bounds of each criterion. Moreover, data
normalization allows for comparison of criteria with various units, as well as for using
both qualitative and quantitative criteria [67].

Several normalization techniques exist, including linear (‘Max’, ‘Max-Min’, and ‘Sum’)
normalization, vector normalization, logarithmic normalization, and fuzzification normal-
ization [68]. The choice of normalization method can impact the final ranking of alternatives;
therefore, it needs to be selected carefully in parallel to the choice of weighting method and
ranking MCDA method [69].

Several studies have proven that vector normalization is the most suitable technique
for the TOPSIS [68,70] and the WSM [71] methods. Meanwhile, the linear ‘Max’ method
is shown to be effective (second-best option) in the TOPSIS method when the number of
criteria is below 5, while the linear ‘Max-Min’ normalization technique is shown to be more
effective when the number of criteria is larger (Equations (3) and (4)) [72].

In this study, we have used the linear ‘Max’ normalization technique for all compared
MCDA methods. In the linear ‘Max’ technique, the normalized minimizable and the nor-
malized maximizable values of criteria are obtained by Equations (2) and (3), respectively.

rij =
maxxij − xij

maxxij −minxij
, (2)

rij =
xij −minxij

maxxij −minxij
, (3)

where rij—the normalized value of criterion xij; maxxij—maximal criterion value; minxij—
minimal criterion value; xij—criterion value; i—number of alternatives; j—number of criteria.
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2.4. Ranking of Alternatives

Ranking of alternatives is a critical stage of the MCDA approach. The selected criteria,
their weights, and data corresponding to the alternatives are used as inputs to the MCDA
algorithm. The ranking from best to worst performing alternative is the desired output of
these algorithms, as it facilitates comparison of alternatives with respect to the selected goal.

A simplified course of action for each MCDA method applied in this study is presented
in Figure 3. The first step of any MCDA method is to define the goal of assessment, i.e.,
with what aim is the MCDA applied. Examples of goal definition include finding the
most efficient pathway for reaching a sustainable DH system [30], identifying the most
efficient catalyst for a chemical conversion process [73], comparing RES for electricity
production [74], and identifying the ecological vulnerability of regions [75]. After the goal
is defined, a set of alternatives is selected for comparison. The first two steps can also be
done in a reverse order, e.g., a set of alternatives is given and only then is the goal of the
assessment defined. The third step is criteria selection (described in Section 2.1), followed by
data collection representing each alternative according to the selected criteria. Further, the
criteria are weighted (see Section 2.2) and criterion values—normalized (Section 2.3) by
building the normalized decision matrix. Finally, all alternatives are assessed by applying
specific calculation steps according to the selected MCDA methodology and they are
ranked with respect to the defined goal of the assessment. The following sub-sections
shortly describe each of the MCDA methods selected for this study.
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2.4.1. WSM

Also known as Simple Additive Weighting (SAW), WSM is a simple MCDA method
that can evaluate alternatives with a minimal number of calculation steps. The normal-
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ized matrix values are weighted and summed to get a score (Si) for each alternative
(Equation (4)).

Si = ∑n
j=1 wjrij, (4)

where rij—the normalized value of criterion xij; wj—weight of criterion j; i—number of
alternatives; j—number of criteria.

When decision-makers need an easy-to-understand MCDA method, WSM is often
used. Since WSM can give similar results to more complex MCDA methods [4], the
simplicity of it does not compromise the results of the model. It has been applied for
sustainability assessment [76].

One of WSM’s requirements is that all selected criteria values are maximizable and
positive [77]. This requirement can be addressed by carefully selecting and defining the
criteria or by transforming the minimizing criteria to maximizing, which can be done in
the normalization step before MCDA.

2.4.2. TOPSIS

The TOPSIS technique sets out to find the alternative closest to the positive ideal
solution and furthest from the negative ideal solution [62]. The alternative that has the
highest closeness value (that incorporates distances from ideal positive and negative
solutions) is ranked the highest of all alternatives. The criteria values are assumed to
be rising and falling monotonically, therefore a normalization must be done that adjusts
minimizable criteria values by reciprocalization or another method.

The multiplication of each normalized decision matrix’s element rij with the assigned
weight coefficient wj results in weighted normalized decision matrix, where vij represents
the weighted normalized value calculated as:

vij = wjrij, (5)

Next, the positive ideal and the negative ideal solutions for each alternative are
determined by finding the alternative’s distance from the matching positive (S+

i ) and
negative (S−i ) ideal solution:

S+
i =

[
∑n

j=1(vij − v+j )
]1/2

, (6)

S−i =
[
∑n

j=1(vij − v−j )
]1/2

, (7)

where vij—weighted normalized value of alternative i with respect to criterion j; v+j —

maximal normalized value with respect to criterion j; v−j —minimal normalized value with
respect to criterion j.

Each alternative’s closeness to the ideal solution (C∗i ) is then determined (Equation (8))
serving as the value for the ranking of alternatives.

C∗i =
S+

i
S+

i + S−i
, (8)

2.4.3. ELECTRE

The ELECTRE family of outranking MCDA methods use pairwise criteria comparison.
Every alternative is set against all others by comparing criterion values. An outranking
relation is then determined by these comparisons. Most criteria must be in favor of the
outranking in an ELECTRE model. Similarly, the rest of the criteria cannot strongly oppose
the ranking. These validations by concordance and non-discordance allow for calculation
of the net superior and the net inferior values for alternatives, respectively.

A normalized decision matrix is weighted as in the TOPSIS method. The next steps
follow a modified ELECTRE-I methodology (see Appendix A) by a paper performing an



Energies 2022, 15, 2411 9 of 23

illustrative case study [78]. This method provides a net superior and a net inferior value
for each alternative. That can be used to create two rankings, but to get one final ranking
the two values are averaged (Equation (9)) as described in a paper by Chatterjee et al. [79].

xj =
(
cj + dj

)
/2, (9)

where xj—final net value of alternative j; cj—net superior value of alternative j; dj—net
inferior value of alternative j.

The final ranking value is called the Net value in ELECTRE.

2.4.4. PROMETHEE

PROMETHEE is a MCDA technique that also uses pairwise comparisons to rank the pro-
vided alternatives. Yet, unlike ELECTRE, PROMETHEE includes preference functions to mea-
sure exact differences between two alternatives regarding the criterion. Multiple preference
functions can be used depending on the criteria properties. The result is one last outranking
flow for each alternative based on which they are ranked.

A procedure of PROMETHEE-II described by Behzadian et al. [80] is followed to
obtain the final outranking flows for every alternative to be used to construct the ranking
(see Appendix B). In PROMETHEE, the final ranking value is called the phi value.

2.4.5. DEA

Data Envelopment Analysis (DEA) is an MCDA method that benchmarks alternatives
to calculate their efficiency. It does so by constructing an efficiency frontier on top of the
alternatives’ criterion value data set. The method does not require data normalization
since function inputs (minimizable criteria values) are evaluated differently from function
outputs (maximizable criteria values) within the model. Also, weights are calculated
by the model and directly included therefore alleviating decision-makers from weight
determination as a separate step. In this study, a free software EMS (Efficient Measurement
System) for solving DEA problems was used [81]. In DEA, alternatives are ranked according
to their efficiency score.

2.5. Sensitivity Analysis

Sensitivity analysis was conducted to interpret the importance of each criterion and
its respective weight to the MCDA model rankings in WSM, TOPSIS, ELECTRE and
PROMETHEE. DEA uses internalized weight calculations hence it was left out of this
analysis. In the models, the range of stability of each criterion was calculated by applying
three different weight change methods—individual weight change, fixed weight change
and equal weight method. The total amount of step-by-step weight change calculations for
the three models was 702. Without some automation these calculations would be way too
impractical as the calculations described in the following sub-sections would have to be
repeated hundreds of times in a row.

2.5.1. Individual Weight Change

To determine the range of weight inputs that keep the MCDA model unchanged, an
approach presented by Li et al. was used in this study [82].

Each individual weight disturbance is defined as follows:

w∗j = wjγj, (10)

where wj is the initial weight, w∗j is the new weight, and γj is the initial variation ratio.
The rest of the weight values therefore must be changed so their sum stays equal to 1.
The resulting weights after the change are calculated:

wj
′ = wjβ j, (11)
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wn
′ =

wn

w1 + w2 + · · ·w∗j + · · ·wn
, (12)

where wj
′ is the target weight and wn

′ describes all other weights, β j is the ratio that marks
the final relation between our target weight before and after disturbance, and n denotes the
number of criteria.

The following relationship between the initial variation ratio γj and the final ratio β j
is considered:

γj =
β j − wjβ j

1− wjβ j
, (13)

To check the stability of the MCDA models, each weight was increased and lowered
by 1% at a time (β j = . . . , 0.98, 0.99, 1, 1.01, 1.02, . . . ) until the ranking of an alternative
changed (see Figure 4). The range of β j values that produced a stable ranking was noted
for every weight, and it was expressed as one value—the range of stability (β jmax − β jmin).
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2.5.2. Fixed Weight Change

The analysis of method-specific scores instead of ranking changes can explain the
correlation between weight changes and the behavior of models more precisely. A weight
change is expected to alter the alternative’s scores uniformly, since the registered changes
can be incremental. A ranking change, on the other hand, is not quantifiable in such a
particular way.

Based on the method described in Section 2.5.1, a fixed weight change was performed
on the MCDA models. Weights were increased or lowered by 10, 20 and 30% (β j = 0.9,
1.1; 0.8, 1.2; 0.7, 1.3) and alternatives’ scores were registered (see Figure 5). These scores
were the WSM score, closeness to the ideal solution value in the TOPSIS, net value in the
ELECTRE, and phi value in the PROMETHEE model. The range of score change was
registered for every alternative. The average range of score was calculated next for every
weight respectively:

AVRc∗j
=
(
∑k

n=1 Cd∗jn
)

/8, (14)
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where AVRc∗1
is the average criteria change for criteria 1 in the TOPSIS model, j is the

respective criteria, and n denotes the alternatives.
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These average values should positively correlate with the weight size—the bigger the
weight, the more MCDA model changes.

2.5.3. Equal Weight Method

To justify weight determination via AHP (or another complex method), equal weight
models were constructed. The differences between AHP and equal weight alternative
rankings were assessed to derive which MCDA method made greater use of extra input
information and employed it in the ranking process.

3. Results and Discussion
3.1. The Ranking Results

The results of the calculated final rankings of the selected alternatives—12 DHCs—are
presented in Table 2. According to the results of the WSM, TOPSIS, PROMETHEE and
ELECTRE models, the two most sustainably operated companies are DHC 10 and DHC
9. Although DHC 10 does not have the highest value by any of the criteria (see Table 1),
it has the second highest value with respect to four criteria (CO2 emissions, share of RES,
heat tariff, and heat consumption of buildings), the total weight of which is 55.79%, and
it is presented as most sustainable by the WSM, TOPSIS, and PROMETHEE methods.
The results of the ELECTRE method show DHC 9 as a leader, for which one criterion (heat
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consumption of buildings) has the best value, while the others are average. The DEA model
highlights DHC 12 and DHC 11 as the two most sustainably operated alternatives. In WSM
and PROMETHEE, the alternatives are listed in the same preference order, while other
models provide slightly different orders.

Table 2. The list of rankings obtained from each MCDA method.

WSM DHC 10 > DHC 9 > DHC 8 > DHC 12 > DHC 11 > DHC 7 >DHC 5 > DHC 4 > DHC 6 > DHC 3 > DHC 2 > DHC 1
TOPSIS DHC 10 > DHC 9 > DHC 8 > DHC 7 > DHC 11 > DHC 12 >DHC 4 > DHC 5 > DHC 6 > DHC 3 > DHC 2 > DHC 1

ELECTRE DHC 9 > DHC 10 > DHC 8 > DHC 11 > DHC 7 > DHC 12 >DHC 4 > DHC 5 > DHC 6 > DHC 3 > DHC 2 > DHC 1
PROMETHEE DHC 10 > DHC 9 > DHC 8 > DHC 12 > DHC 11 > DHC 7 >DHC 5 > DHC 4 > DHC 6 > DHC 3 > DHC 2 > DHC 1

DEA DHC 12 > DHC 11 > DHC 8 > DHC 10 > DHC 9 > DHC 7 >DHC 6 > DHC 5 > DHC 4 > DHC 3 > DHC 1 > DHC 2
Green background—top six performing DHCs, red background—bottom six performing DHCs.

In an outranking model (ELECTRE, PROMETHEE), a good value in one criterion
can compensate for a bad value in another criteria. Any alternative with one or multiple
values that are the worst in the group will most certainly not obtain the highest ranking
in these models. Although DHC 11 and DHC 12 have at least one criterion with the
lowest value among all alternatives, they are not at the bottom of the ranking because
they simultaneously have three maximum values in other criteria. In the DEA model, the
efficiency frontier of DHC 11 and DHC 12 is perhaps pushed further than by any other
alternatives, and one minimum score does not diminish it enough.

One thing that is common for all the methods is that a clear division exists between
the top six alternatives (DHC 7 to DHC 12) and the bottom six alternatives (DHC 1 to
DHC 6). In the DEA model, the efficiency values of these top six alternatives exceed
100% and therefore those alternatives can be branded as efficient. The bottom six score
below 100%, thus they are not considered efficient. Table 3 shows the ranking values of all
alternatives obtained in the MCDA models. To distinguish among the rankings obtained in
each method, the specific final ranking scores are calculated showing the distance to the
score of the best alternative by percentage.

Table 3. The ranking values in each MCDA model *.

MCDA
Method WSM TOPSIS ELECTRE PROMETHEE DEA

MCDA
Result Score % Closeness

Value % Net
Value % Phi

Value % Efficiency %

DHC 1 0.21 0 0.30 0 −11.78 0 −0.31 0 33 1
DHC 2 0.26 10 0.34 12 −8.73 15 −0.26 10 31 0
DHC 3 0.31 23 0.38 26 −8.02 19 −0.20 23 48 4
DHC 4 0.50 66 0.54 78 2.22 70 0.00 66 53 5
DHC 5 0.50 66 0.49 62 −2.65 46 0.01 66 71 9
DHC 6 0.42 48 0.45 47 −7.11 23 −0.08 48 77 11
DHC 7 0.59 88 0.58 88 4.97 84 0.11 88 116 20
DHC 8 0.62 95 0.58 91 5.75 88 0.14 95 143 26
DHC 9 0.64 98 0.61 99 8.10 100 0.15 98 124 22

DHC 10 0.65 100 0.61 100 5.92 89 0.17 100 126 22
DHC 11 0.61 92 0.57 86 5.48 87 0.13 92 192 38
DHC 12 0.62 93 0.55 79 2.66 73 0.13 93 460 100

* Green—highest value among all alternatives; red—the lowest value among all alternatives; blue—the lowest
value among the six best alternatives; green background—top six performing DHCs, red background—bottom six
performing DHCs.

Models that display a higher distance between the specific final scores of top alter-
natives provide a more stable ranking. The two leaders determined by DEA have a stark
difference in their final specific scores (100% and 38%). The leaders of ELECTRE have a
specific final score difference of 12%. The leading alternative scores of other methods are
much more similar. A small change in input data or criteria weights is likely to change
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the currant ranking of these methods, while ELECTRE and DEA scores are less likely to
be disturbed.

The specific final ranking values of alternatives are the same for the WSM and the
PROMETHEE methods (see Table 3), explained by the aggregated preference function
selected for the PROMETHEE method. It mirrors the weighting and the summation steps
in the WSM method. The other transformations in the PROMETHEE method contribute to
the calculation of the phi values of each alternative that differ from the WSM scores yet
they are still the same after normalization.

3.2. Results of Sensitivity Analysis
3.2.1. Individual Weight Change

The individual weight change sensitivity analysis was performed by changing the
weight of a single criterion until a change in the ranking of alternatives was observed.
The weight range at which the ranking remained unchanged produced the range of stability
for each criterion. The higher the range of stability, the more the weight of a criterion must
be changed to alter the ranking of alternatives. The results of the sensitivity analysis are
presented in Figure 6a–d.
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Dividing the range of stability between the highest and the lowest values into two
equal parts, the relatively stable and unstable areas can be identified. The criteria with
higher weights are in the unstable area. It can be seen in Figure 6a,c,d, that in the WSM,
ELECTRE and PROMETHEE methods respectively, six out of eight criteria are relatively
unstable, including the criterion with the smallest initial weight. When using these methods
for sustainability assessment, it should be considered that even a criterion with the lowest
initial weight may affect the ranking results. Still, in our case study, the criterion with the
smallest initial weight did not change the leading alternative of the ranking (DHC 10 in
WSM, TOPSIS, PROMETHEE, and DHC 9 in ELECTRE). In addition, the obtained results
show that in the TOPSIS model, the range of stability has a clear negative correlation to the
weight value—the criteria with larger weights have to be disturbed the least to change the
ranking as they have the most importance or the highest impact in the model (Figure 6b).
Similarly, it is expected that smaller weights have less impact on a model’s stability. Yet, the
results show that the outranking models are much less stable than expected with respect to
criterion with the smallest weight (produced heat energy in cogeneration).

A more detailed analysis of the impact of changes in each criterion on the sustainability
performance of DHC should be performed. The results of such an analysis could be
included in the development strategy for each DHC; MCDA is an appropriate tool for such
a task, but it is not the objective of this article.

3.2.2. Fixed Weight Change

The results of the fixed weight change (+/−10, 20, 30%) with respect to the initial
weight of criteria are presented in Figure 7. The values on the y axis are averaged from the
12 alternatives responding to the weight change of one criterion.
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MCDA models (A1, B1, C1, D1—average change in the alternatives’ value caused by changing the
initial weight of the most important criterion (heat tariff) by 30%; A2, B2, C2, D2—average change in
the alternatives’ value caused by changing the initial weight of the least important criterion (produced
heat in cogeneration) by 30%).
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All models exhibit similar correlation between the weight values and the ranking
score values. The correlation between the fixed weight change in the range between
+/−10% and +/−30% and the initial weight in the applied MCDA models is nonlinear.
The change in the three criteria with the smallest initial weight show a relatively flat line
of correlation indicating their flexibility against such weight changes. In contrast, the
alternatives’ values increase sharply when changes are made to the criteria with the initial
criterion weight above 0.125. When the initial weights are increased, the alternatives’ value
changes more significantly in the TOPSIS method than in other methods. For example, a
weight change of +/−30% of the most significant criterion, results in an alternatives’ value
that is 6.1 times higher than the alternatives’ value when the least significant criterion is
changed by +/−30%. Meanwhile, for the ELECTRE method this ratio is 3.7, and for the
WSM and the PROMETHEE methods the ratio is 2.4. Therefore, it is concluded that the
TOPSIS method is the most sensitive to changes in weight, while other methods are more
flexible to weight change.

3.2.3. Equal Weight Method

Each of the eight criteria was assigned a weight of 12.5% (100% divided by 8 criteria).
The obtained ranking lists were compared to the ranking lists obtained by using the AHP
weights. The results of the comparison are presented in Table 4.

Table 4. The results of the alternatives’ ranking lists when using equal weight method and AHP method *.

WSM TOPSIS ELECTRE PROMETHEE

Equal
Weights

AHP
Weights

Equal
Weights

AHP
Weights

Equal
Weights

AHP
Weights

Equal
Weights

AHP
Weights

DHC 12 DHC 12 DHC 12 DHC 12 DHC 12 DHC 12 DHC 12 DHC 12
DHC 11 DHC 11 DHC 11 DHC 11 DHC 11 DHC 11 DHC 11 DHC 11
DHC 10 DHC 10 DHC 10 DHC 10 DHC 10 DHC 10 DHC 10 DHC 10
DHC 8 DHC 8 DHC 8 DHC 7 DHC 7 DHC 7 DHC 8 DHC 8
DHC 7 DHC 7 DHC 7 DHC 8 DHC 8 DHC 8 DHC 7 DHC 7
DHC 9 DHC 9 DHC 9 DHC 9 DHC 9 DHC 9 DHC 9 DHC 9
DHC 6 DHC 6 DHC 5 DHC 4 DHC 6 DHC 5 DHC 6 DHC 6
DHC 1 DHC 3 DHC 1 DHC 3 DHC 1 DHC 3 DHC 1 DHC 3
DHC 4 DHC 2 DHC 4 DHC 2 DHC 4 DHC 1 DHC 4 DHC 2
DHC 3 DHC 1 DHC 3 DHC 1 DHC 2 DHC 2 DHC 3 DHC 1
DHC 5 DHC 5 DHC 6 DHC 5 DHC 5 DHC 4 DHC 5 DHC 5
DHC 2 DHC 4 DHC 2 DHC 6 DHC 3 DHC 6 DHC 2 DHC 4

* Red—the differences in ranking.

The results show that in the WSM, ELECTRE, and PROMETHEE methods, assigning
equal weight to all assessment criteria does not change the ranking of the top six alternatives.
Meanwhile, the TOPSIS results are more affected and only the ranking of the top three and
the sixth alternative remain unchanged.

3.3. Results of MCDA Methods’ Comparative Assessment

All methods used in this study were assessed and compared for their simplicity of use,
result interpretation, result robustness and other properties. The results of the comparative
assessment are summarized in Table 5.

Of the MCDA methods assessed, all but DEA require a weighted normalized decision
matrix for the ranking of alternatives. Those methods therefore necessitate an additional
step—weighting of criteria. Even though mistakes in criteria weighting are unavoidable, the
determination of the relative importance of the criteria is a worthwhile step [2] that is well
documented in the MCDA literature. The normalization technique should be considered
alongside the MCDA method and other parameters as the number of criteria [69]. Both add
to the number of steps a decision-maker must take while performing MCDA, so the appeal
of methods like DEA that forgo these steps is logical.
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Table 5. Summary of each methods’ properties.

WSM TOPSIS ELECTRE PROMETHEE DEA

Simplicity of calculations

Weighting Required Required Required Required Not required

Normalization Required Required Required Required Not required

Number of steps 3 4 11 8 Not assessed

Ease of
automation for

sensitivity analy-
sis

Easy Easy High difficulty Medium difficulty High difficulty

Overall simplicity Very easy Easy High difficulty Medium difficulty High difficulty

Results

Result interpreta-
tion difficulty High difficulty High difficulty Easy (negative and

positive values)
Easy (negative and

positive values) High difficulty

Robustness

Can ranks reverse
if an alternative

is deleted?
No, by design No, by design Yes, by design Yes, by design Yes, by design

Relationship between low and high criteria values

Does a low
criteria value get

compensated by a
high

criteria value?

Yes, by increasing
the alternatives’

final value

Yes, by increasing
the alternatives’

final value

Yes, by outrank-
ing principles

Yes, by outrank-
ing principles

Yes, by increasing
the alternatives’

final value

Can an alternative
with one lowest

criterion value be
the leader?

Yes Yes No No Yes

Availability of
free and docu-

mented software
Not needed Yes (e.g., De-

cernsMCDA [83])
Yes (e.g., Decision

Deck [84])
Yes (e.g., Visual

PROMETHEE [85]) Yes (e.g., EMS [81])

Popularity

In the field of DH
(number

of papers)

Not widely
used (2) Most popular (12) Least popular (1) Not widely

used (3) Fairly popular (7)

Additional
properties

Rank reversals
when the number

of criteria is
low [86]

Rank reversals
when the number
of criteria is high

[86]; arbitrary
definition of

threshold values

Different
preference

functions can lead
to different
outcomes;

arbitrary definition
of threshold values

Does not fare well
with

imprecise data

The main flaws of any MCDA method lay in the normalization procedure and in
the use of additive formulas that disrupt the initial associations between the alternatives
(and alter the rankings) [87]. Both WSM and TOPSIS have the simplest calculations and
the fewest steps, while PROMETHEE and ELECTRE are conversely tougher to perform.
That is because of the differing number of steps involved and the unique challenges in
the automation process for sensitivity analysis without a dedicated software. Altogether
WSM seems to be the simplest MCDA method to work with as per its least number of
calculation steps. Although it does not need prior weighting and normalization, DEA is the
most difficult to calculate (DEA calculations were not manually performed in this study).
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It also requires input data values to be precise, as ordinal types of data are not sufficient for
traditional DEA.

Even though WSM and TOPSIS are the simplest MCDA methods, the results can
be difficult to interpret. The ELECTRE and the PROMETHEE methods result in positive
and negative net sum and phi values that automatically divide the alternatives into best
and worst. The WSM scores and the TOPSIS C* values are all positive. Also, efficiencies
calculated by DEA have no negative values, but they are divided into two groups—efficient
(above 100%) and non-efficient (bellow 100%).

The robustness of an MCDA method can be affected when new alternatives are added
or existing—omitted from the model. By design, the outranking methods (ELECTRE
and PROMETHEE) can provide different rankings if an alternative is taken out, since
their values are calculated with respect to other alternatives [88]. Alternatives in DEA
are evaluated based on their closeness to the efficiency frontier which is comprised of
input data. An added alternative could therefore change the efficiency scores of others.
This property of ELECTRE, PROMETHEE, and DEA methods should be considered by
decision-makers. The WSM scores and the TOPSIS C* values are calculated individually
and therefore cannot change in this way.

All MCDA methods compensate low criterion values with high values in some way.
Yet, the outranking methods do not tolerate extremely low values by design. In ELECTRE
and PROMETHEE models, an alternative with the lowest criterion value cannot be the
leader—the non-discordance principle.

The most popular MCDA methods have free software available (all but WSM assessed
in this study). In the context of DH, TOPSIS and DEA seem to be the most popular with 12
and 7 papers accordingly in the Scopus database [7,17,20–56] (see Supplementary Material).
It has been recorded that the TOPSIS method experiences fewer rank reversals when the
number of criteria is lower. The opposite was found to be true for ELECTRE [86].

The outranking methods have arbitrary definitions for key concepts like the c or the
d critical values in the PROMETHEE model. Furthermore, the aggregated preference
functions should be chosen accordingly, when dealing with a decision-making problem.

4. Conclusions

In this study, five MCDA methods were selected and assessed for their application
in a sustainability assessment of DHC. The robustness of results obtained in four of the
methods was assessed by applying sensitivity analysis of criteria weights. Three different
approaches were used for the sensitivity analysis. The results of all three approaches
distinguish TOPSIS from the other MCDA methods used. It is concluded that the TOPSIS
method is the most sensitive to changes in criteria weights, i.e., the more a criterion is
changed the higher the alteration of the ranking results. Moreover, TOPSIS displays a
clear negative correlation between the criteria weights and the weight range at which
the alternatives’ ranking remains unchanged. Thus, a criterion with larger weight has
higher impact to the ranking change compered to criteria with smaller weight. It is also
concluded that a careful weight assessment, e.g., by applying the AHP method, is needed
when using TOPSIS.

Meanwhile, other MCDA methods, namely WSM, ELECTRE, and PROMETHEE are
more flexible to criteria weight change. The results of the equal weight method show that
the ranking of the top six alternatives is not affected when equal (12.5%) or differentiated
(AHP) weights are used. Hence, at least at the initial phase of a WSM, ELECTRE, or
PROMETHEE study, the same (equal) weight can be assigned to all criteria, leaving the
robustness tests of results for the end phase of the study.

A comparative assessment of the MCDA methods indicates that in many cases, TOPSIS
could be preferred due to its simplicity and clear interpretation of the results. Yet, in
balancing the simplicity of a method with the accuracy of the results, the proper weighing
method should be selected. The AHP method is a relatively simple and sufficiently accurate
method to consolidate various views of involved experts.
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Criteria weights directly influence the obtained results of DHC performance evaluation.
The AHP method for weighing is preferable because of its comprehensibility and its
simplicity in application. Additionally, attention should be paid to both the choice and the
number of criteria, depending on the aim of the application of an MCDA method.

The ELECTRE and the PROMETHEE methods allow for a very detailed assessment,
however the computation process by these methods is quite complex, therefore the methods
are more suitable for MCDA experts. A case-specific choice of an aggregated preference
function in a PROMETHEE procedure could refine the results by tailoring the procedure
to the input data and the properties of the criteria. The c and the d critical values of the
ELECTRE method should also be looked at critically; simpler methods without threshold
values from the ELECTRE family exist, and they should be assessed. Moreover, since the
method technically produces two distinct rankings for alternatives, a further study of the
accuracy of these results should be done.

Overall, depending on the aim and the level of detail of the assessment, any of
the methods tested in this study can be used for a sustainability assessment of DHC,
DH systems, or energy systems at large. Equally, the MCDA approach can be used for a
sustainability assessment of DHC’s transition toward 4GDH and implementation of a smart
thermal grid concept or the 5GDH considering the point of view of different stakeholders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15072411/s1, Table S1: MCDA articles in the field of DH.
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Appendix A

ELECTRE-I
Concordance interval set (Cab) must be determined that describes the dominance query

(1 for dominance, 0 otherwise):

Cab =
{

j
∣∣∣vaj ≥ vbj

}
where vaj and vbj are the normalized weighted values of alternatives a and b with respect
to the criterion j.

Discordance interval (Dab) set is constructed as:

Dab =
{

j
∣∣∣vaj − vbj

}
where vaj and vbj are the normalized weighted values of alternatives a and b with respect
to the criterion j.

A concordance interval matrix (c(a, b)) is created (concordance interval set value
according to weight):

c(a, b) = ∑
j∈c(a,b)

wj

https://www.mdpi.com/article/10.3390/en15072411/s1
https://www.mdpi.com/article/10.3390/en15072411/s1
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Discordance interval matrix is determined by

d(a, b) =
maxj∈Dab

∣∣∣vaj − vbj

∣∣∣
maxj∈J,m,mεI

∣∣vmj − vnj
∣∣

Concordance index matrix (c) is created by comparing the interval matrix values to
the calculated c critical value:

c = ∑m
a=1 ∑m

b
c(a, b)

i(i− 1)

{
e(a, b) = 1 i f c(a, b) ≥ c
e(a, b) = 0 i f c(a, b) < c

where i denotes the number of alternatives.
Discordance index matrix (d) is created similarly by comparing the interval matrix

values to the calculated d critical value:

d =
∑m

a=1 ∑m
b d(a, b)

i(i− 1)

{
f (a, b) = 1 i f d(a, b) ≤ d
f (a, b) = 0 i f d(a, b) > d

where i denotes the number of alternatives.
Net superior values (ca) are calculated from the concordance interval set:

ca =
n

∑
b=1

c(a,b) −
n

∑
b=1

c(b, a)

Net inferior values (da) are calculated from the discordance interval set:

da =
n

∑
b=1

d(a,b) −
n

∑
b=1

d(b, a)

Appendix B

PROMETHEE-II
A comparison matrix (Pj(a, b)) is created

Pj(a, b) =
{

j
∣∣∣raj − rbj

}
where raj and rbj are the values of alternatives a and b with respect to the criterion j.

The negative values are changed to 0

Pj(a, b) = 0, i f raj ≤ rbj

Pj(a, b) =
(

raj − rbj

)
, i f raj > rbj

Each comparison’s values are aggregated by the chosen aggregated preference function
(π(a, b))

π(a, b) = ∑n
j=1 wjPj(a, b)

where wj is the weight of criterion j.
The negative and the positive flows of each alternative are determined

ϕ+=
1

1− i ∑i
b=1 π(a, b) ϕ−=

1
1− i ∑i

b=1 π(b, a)

where i denotes the number of alternatives.
The outranking flow of each alternative (ϕ(a)) is determined

ϕ(a) = ϕ+(a)− ϕ−(a)
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