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Abbreviations

aCGH Array comparative genomic hybridization
ACMG American College of Medical Genetics
ADO Allelic drop out

ART Assisted reproductive technologies
BMI Body mass index

CL Cervical length

DNA Deoxyribonucleic acid

ECM Extracellular matrix

EDS Ehlers-Danlos syndrome

EPL Early pregnancy loss

eSET Elective single embryo transfer

FFPE Formalin fixed paraffin embedded
fPCR Fluorescent polymerase chain reaction
FSH Follicle stimulating hormone

GnRH Gonadotropin-releasing hormone
GWAS Genome wide association study

hCG Human chorionic gonadotropin

HGNC HUGO gene nomenclature

HPO Human phenotype ontology

ICSI Intracytoplasmic sperm injection

IVF In vitro fertilization

LDO Locus drop out

LH Luteinizing hormone

LHCGR Luteinizing hormone chorionic gonadotropin recepto
MCC Maternal cell contamination

MDA Multiple displacement amplification
NGS Next generation sequencing
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OMIM
PCR
PGD
PGT
PGT-A
PGT-M
PN
POC
POF
POI
POP
PPROM
PTB
SNP
SNV
STR
VCF
VUS
WES
WGA

Nucleotide

Online Mendelian inheritance in man
Polymerase chain reaction

Preimplantation genetic diagnosis
Preimplantation genetic testing

Preimplantation genetic testing for aneuploidies
Preimplantation genetic testing for monogenic disorders
Pronucleus

Products of conception

Premature ovarian failure

Premature ovarian insufficiency

Pelvic organs prolapse

Premature prelabor rupture of fetal membranes
Preterm birth

Single nucleotide polymorphism

Single nucleotide variation

Short tandem repeat

Variant called file

Variant of unknown significance

Whole exome sequencing

Whole genome amplification



Introduction

Female reproductive failure is an ongoing global challenge having
significant medical, social, and financial implications, being estimated to affect
as many as 16.2% of women in certain countries (Singh, 2004; Maddirevula
et al.,, 2020; Inhorn and Patrizio, 2014). There are numerous definitions
of infertility, e.g., WHO defines infertility as “a disease of the reproductive
system defined by the failure to achieve a clinical pregnancy after 12 months or
more of regular unprotected sexual intercourse”. In this thesis, | use the term
“female infertility” as an inability to conceive and a broader term “female
reproductive failure” as an inability to conceive and/or carry pregnancy until
term.

Genetic causes are recognized as important contributors to female
reproductive failure at the level of all main constituents of successful conception
and pregnancy progress starting with embryonic, maternal (e.g., endometrial)
and common — placental factor. Identification of genetic causes began in the late
fifties of the 20™ century when Turner syndrome was discovered by the means
of karyotyping (Ford et al.,, 1959), and continues to this day aided by
the development of novel molecular techniques and technological advancements.
Nonetheless, still relatively little is known about the genetic background of most
cases of reduced female fecundity, and unfortunately even less is translated into
clinical practice, preventing the progress of personalized treatment entry
into reproductive medicine.

Without doubt, 21% century for clinical medicine and especially research
can be addressed as the century of genomics since major breakthrough was
possible due to the underpinning of molecular mechanisms for the majority
of the diseases. Naturally, genetic tests are becoming increasingly demanded
in the frame of diagnosing and managing female reproductive failure as well.

Unfortunately, often there is a lag in the understanding of the data resulting from



the state-of-art technologies and its clinical applicability due to a variety
of peculiarities associated with each technique and insufficient knowledge
of molecular and genetic pathophysiology of impaired female reproductive
capability. In the context of missing and/or insufficient guidelines regulating
the field, this all results in the increased risks of mismanagement, psychological

burden and excess costs for the patients, their family members, and offspring.

Aim of the study

To demonstrate a reliable application of advanced genomic techniques
in different stages of female reproductive failure in real-life clinical or research
scenarios in order to increase couple’s chances to conceive a healthy child,
improve the reliability of genetic testing in early pregnancy loss, and unravel
the underlying genetic cause of cervical insufficiency.

Objectives of the study

1. To develop preimplantation genetic testing protocols and to compare
the performance of two different whole-genome amplification
techniques for multiple downstream applications in preimplantation
embryo genetic testing.

2. To develop a protocol for maternal cell contamination assessment
in the genetic testing of products of conception in early pregnancy
loss.

3. To perform a systematic analysis of the genes implicated in uterine
cervix functioning to assist next-generation sequencing data

interpretation from patients with cervical insufficiency.



4. Through the application of NGS to a patient cohort with preterm
delivery due to cervical insufficiency, to characterize the genetic
landscape of the condition and to identify the gene variants that

increase the likelihood of cervical insufficiency development.

Hypothesis of the study

Advanced genetic technologies could be successfully used in various
stages of female reproductive failure to reliably assess several classes of genetic
variations perturbing female reproductive potential, while the lack of best
practice guidelines on genetic testing and gene-disease clinical validity
assessment prevents clinical applicability of the existing genetic knowledge

in the field of female reproduction.

Scientific novelty of the study

The work described in Chapter 2 represents the development
of individualized preimplantation embryo genetic testing protocols and
the introduction of such testing in Latvia, it also depicts a comparison of two
widely used whole genome application techniques, which is something done for
the first time. Chapter 3 is devoted to the known problem of maternal cell
contamination in the genetic testing of products of conception and offers
a remastered low-resource setting protocol of visual and technological material
evaluation and handling capable to successfully address the issue. Chapter 4
not only describes the results of next generation sequencing applied to the cohort
of patients with isolated cervical insufficiency, which was done for the first time,
but also contains a comprehensive and systematic work on literature and gene

analysis on this topic, which also was done for the first time.



Ethics

The work done during this study is in accordance with the ethical
principles of the Declaration of Helsinki and was approved by the Central
Medical Ethics committee of Latvia (please see Supplement 1 and 2 at the very

end of this work).
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1 Literature Review
1.1  Genetic causes of female reproductive failure

The development and functioning of female gonads and thus major
aspects of female reproduction are mostly dictated by the proper performance
of the hypothalamic pituitary gonadal axis. The activity of the pituitary gland is
stimulated by the gonadotropin-releasing hormone (GnRH) produced by neurons
in the hypothalamus. The gonadotropins — follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) secreted by gonadotroph cells located
in the anterior pituitary gland have a central role in folliculogenesis and
regulation of ovulation. FSH is required for the monthly recruitment and growth
of cohorts of developing follicles while LH activity mediates the final stages
of follicle maturation and induces a cascade of events leading to ovulation
(McGee and Hsueh, 2000). During the late stages of follicular development,
granulosa cells within the follicle acquire LH / chorionic gonadotropin receptors
(LHCGR) and become responsive to the presence of the ligand (Mitri et al.,
2014). Eventually, sex steroids then exert negative feedback at both
the hypothalamus and the pituitary to control the gonadotropin stimulus
(Figure 1.1). Various genetic defects in genes ensuring activity
of the hypothalamic-pituitary-gonadal axis that result in gonadal dysfunction and
infertility have been described (Beau et al., 1998; Layman, 2013).

11



Figure 1.1 Schematic representation of the hypothalamic-pituitary-gonadal
axis functioning in female (scheme by L. Volozonoka)

The hypothalamus releases gonadotropin-releasing hormone (GnRH), which
stimulates the anterior pituitary gland to produce luteinizing hormone (LH) and follicle-
stimulating hormone (FSH), which target the ovary to produce estrogen and
progesterone; the latter provides negative feedback back to
the hypothalamus and pituitary.

When female manifests symptoms of estrogen deficiency, such as absent
breast development or hypoestrogenic amenorrhea, there is a lack of negative
feedback to the hypothalamus and pituitary gland. Serum gonadotropin levels
in these patients are low (or inappropriately normal), indicating that the defect is
in the hypothalamus or pituitary. These patients usually have GnRH deficiency.
If the sense of smell is normal, this disorder is termed normosmic
hypogonadotropic hypogonadism; when an impaired sense of smell accompanies
hypogonadotropic hypogonadism, Kallmann syndrome is present. In contrast to
hypogonadotropic hypogonadism, if serum FSH and LH remain elevated on
several occasions, hypergonadotropic hypogonadism is expected, indicating that

the defect is at the level of the gonads (i.e., ovaries in females). When a patient

12



has hypergonadotropic hypogonadism, it is always important to think about
Turner syndrome (pure monosomy X — 45,X or mosaic forms) (ICD-10 Q96.9)
(Layman, 2013). With the development of in vitro fertilization (IVF) techniques
and the burgeoning increase of its application worldwide, the processes of oocyte
development, fertilization, and early embryonic development can now be
accurately evaluated and investigated, facilitating the discovery of new
phenotypes and genes responsible for female reproductive failure (Sang et al.
2019). Table 1.1 summarizes genes implicated in the development of female
reproductive failure caused by the pre-gonadal factors, at the level of gonads, as

well as eugonadal phenotypes.
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1.2  Genetic testing in a diagnostic setting

Whilst research is free in terms of choosing approaches and
methodologies, drafting conclusions and being responsible in front of a patient,
the main tasks of genetic testing in a diagnostic setting should follow quite
a steady path, respectively, elucidate the true genetic cause / risk of the disease
clearly defining the testing limitations; identify relatives having an increased risk
of developing the condition; identify genetic diseases transmissible to offspring;
identify specific subtypes of the condition suitable for tailored management if
such exists; and the one task especially applicable to human reproduction —
optimize usage of the assisted reproductive technologies (ART).

Several recommendations have been established for genetic
preconception carrier screening, including the ones in the frame of ART
(Edwards et al. 2015), however, no guidelines or committee opinions are released
regarding genetic testing in female reproductive failure. Consequently, very few
specific tests are routinely recommended to investigate the presence
of chromosomal disorders or single-gene defects related to their clinical
phenotypes (Cariati, D’Argenio, and Tomaiuolo 2019). For example,
karyotyping is used to assess chromosomal changes, like Turner syndrome, or to
distinguish Swyer syndrome in phenotypical females with 46,XY chromosomal
composition. Karyotyping currently is the only methodology applied to diagnose
balanced karyotype changes, as structural autosomal aberrations may be found
in about 5% of females with non-syndromic reproductive failure (Gekas et al.,
2001). The next well-known test with an established position in female infertility

is the assessment of CGG repeat expansion in FMR1.
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1.2.1 Preimplantation embryo genetic testing

The per cent of women aged 15—49 who have ever used infertility services
in the United States of America is 12.7%. Although the use of ART is still
relatively rare as compared to the potential demand, its use has almost doubled
over the past decade — approximately 1.9% of all infants born in the US every
year are conceived using ART (Singh, 2004). Since the birth of Louise Brown,
the world’s first ‘test-tube baby”’ in 1978 (Steptoe and Edwards, 1978), ART have
undergone significant technological and methodological improvement. Live
birth rates using I'VF alone range from 27% to 55%, depending on the patient age
group and methodology used (Dahdouh et al., 2015). Unsuccessful treatment
of infertility is one of the pitfalls in clinical reproduction.

One of the major breakthroughs in ART — preimplantation embryo
genetic testing (PGT) is now routinely used to investigate the genetic make-up
of embryos produced by IVF. Originally PGT was introduced to analyze embryos
from the known carriers of monogenic disorders (PGT-M) but later evolved to
screen a whole set of chromosomes as an embryo selection tool in the hope
of increasing live birth rates per transfer (PGT-A) (Theobald, SenGupta, and
Harper, 2020).

1.2.2 Genetic testing of products of conception

A number of approaches and methodologies are used for POC genetic
testing including classical cytogenetic techniques (karyotyping, fluorescent
in situ hybridization), PCR based methods and genomic techniques like array
comparative genomic hybridization (aCGH) and NGS. All of them have
limitations, e.g., a prerequisite for a successful karyotyping is the presence
of viable choroidal tissues in the primary biological material (Lomax et al.,
2000), but most importantly all methods can give misleading results when

maternal cell contamination (MCC) in the sample is overlooked. MCC problem
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in POC testing is recognized in the laboratory practice (Jarrett et al., 2001; Shen
et al., 2016), however, it still places a burden on analysis interpretation and
reporting, and specific protocols allowing to acknowledge and surpass the issue
for all POC cases are not widely adopted as seen in the scientific literature.

1.3 Literature review: summary

As seen, certain success has been achieved during the last decades
in deciphering the molecular and genetic basis of female reproductive failure.
Nevertheless, usage of the existing knowledge in clinical practice is still
fragmented and cumbersome (Cariati, D’Argenio and Tomaiuolo, 2019). This
perhaps could be explained with i) the explicitly broad and sometimes
overlapping spectrum of reproductive phenotypes and their heterogeneity, ii) an
array of existing genomic technologies and testing approaches, each of which is
associated with different limitations and peculiarities. Therefore, the aim of this
study included the development of reliable protocols exploiting advanced
genomic technologies capable to address certain phenotypes / stages of female
reproduction and / or overcoming shortcomings of these technologies, and
demonstrating their suitable application to real-life clinical or research scenarios.

Thus, part of this work described in Chapter 2 was devoted to the
development of multifactor preimplantation embryo testing protocol where
a performance comparison of two whole-genome amplification techniques for
different downstream applications was demonstrated. Furthermore, we addressed
the existing problem of MCC in genetic testing of products of conception —
Chapter 3 of this thesis was devoted to the development of MCC assessment
protocol and to the formulation of recommendations that address the entire
workflow of POC samples handling from preanalytical, through

the analytical stages. Lastly, in Chapter 4 we attempted to comprehensively
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elucidate the genetic landscape of non-syndromic cervical insufficiency using

NGS since the etiology of this complex phenotype is largely missing.
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2 Performance comparison of two whole genome
amplification techniques in frame of multifactor
preimplantation genetic testing

Published as:

Ludmila Volozonoka, Dmitry Perminov, Liene Kornejeva, Baiba
Alksere, Natalija Novikova, Evija Jokste Pimane, Arita Blumberga, Inga Kempa,
Anna Miskova, Linda Gailite, Violeta Fodina, 2020. Performance comparison
of two whole genome amplification techniques in frame of multifactor
preimplantation genetic testing. Journal of assisted reproduction and
genetics, 35(8), 1457-1472. DOI: 10.1007/s10815-018-1187-4.

Personal input:

My personal input into this work includes the design of the embryo testing
protocols, selection of the methodologies to be used for the testing, hands-on
testing of three families out of nine, data interpretation, comparison of the two
whole genome amplification techniques, writing the original draft
of the manuscript. Please see supplementary files for the signed forms from all

the co-authors to use this manuscript for my thesis (Supplement 3).

2.1 Introduction

Preimplantation genetic testing is an alternative to prenatal testing for
couples being at risk of transmitting a genetic disorder to their offspring. PGT
allows exclusion of affected embryos before a clinical pregnancy has been
established thus avoiding invasive prenatal testing and elective termination
of pregnancy due to a prenatally confirmed diagnosis. With time, PGT has
undergone significant methodological and approach changes, starting from polar
body testing and blastomere analysis to the currently adapted trophectoderm

biopsy with subsequent blastocyst freezing (Renwick et al., 2006). Despite
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technological improvements, the development of PGT protocols is challenging
and prone to amplification failure, DNA contamination and allelic dropout
(ADO) — a phenomenon common to all single-cell based PCR tests, thus
affecting the reliability of the test. ADO’s incidence varies, but in extreme cases,
up to 20% of amplifications were affected in the past leading to several
misdiagnoses (Capalbo et al., 2016).

Choosing the type of WGA is also challenging due to difficulties in the
interpretation of downstream applications like short tandem repeat (STR) marker
sizing with fluorescent polymerase chain reaction (fPCR) or array comparative
genomic hybridization (Rechitsky et al., 2015). At the moment several WGA
technologies exist (Zheng et al., 2011) e.g. PCR based approaches like
degenerate oligonucleotide primer (Telenius et al., 1992) or primer extension
PCR technology (L. Zhang et al., 1992). Leading positions are taken by
OmniPlex linear WGA (Uda et al., 2007; S. U. Chen et al., 2008) technology
developed by Rubicon Genomics and multiple displacement isothermal synthesis
by Phi-29 polymerase approach (Handyside et al., 2004). Both of them have
advantages and disadvantages. The use of Tag DNA polymerase in PCR based
approaches limits the fragment lengths to 3 kb. Phi-29 polymerase used for
multiple displacement amplification (MDA) generates DNA fragments up
to 100 kb and has a 3°’—5” exonuclease proofreading activity. Often it is not clear
which technology could be prioritized in custom-designed protocols (Zheng
et al., 2011). Regardless of the fact that PGT is recognized for its benefits, it is
still relatively unregulated and lacks standardization compared with other forms
of diagnostic testing (Harton et al., 2011).

Despite numerous advances, ART live birth rates are still low ranging
from 27% to 55%, depending on the patient age group and methodology used
(Dahdouh et al., 2015). Another step in reaching considerably good results for

single gene disorder PGT is embryo aneuploidy exclusion since it is well known
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that preimplantation human embryos are prone to chromosome instability
(Vanneste, Voet, Le Caignec et al., 2009) and high aneuploidy rates (Vanneste,
Voet, Melotte et al., 2009; Kieffer et al., 2016). Early results show that combined
PGD and PGS increase the patient chance of healthy childbirth (Marshall et al.,
2015; Sermon, 2017).

Taking into consideration the aforementioned information, the aim of our
study was to develop an effective and robust individualized multifactor embryo
testing protocol and to show the performance comparison of two WGA
techniques in four different downstream applications — short tandem repeat

(STR) sizing, Sanger sequencing, aCGH and SNaPshot technology.

2.2 Materials and methods
2.2.1 Pre-clinical work-up

Nine couples with a confirmed particular single gene disease transmitted
in their family underwent counselling regarding the PGT procedure, ovarian
stimulation, oocyte aspiration and IVF. Before processing a clinical case,
aworkup was carried out to prepare each PGT case. Linked microsatellites
adjacent to the gene of interest were located through the University of California
Santa Cruz genome browser (https://genome-preview.ucsc.edu/index.html). For
all loci, semi-nested primers for two round multiplex fPCR were designed using
the “Primer-BLAST” to ensure specificity (Ye et al., 2012).

DNA obtained from the peripheral venous blood of a couple seeking PGD
and other family members was isolated using a standard procedure (Qiagen).
Family haplotypes flanking loci of interest were assessed. When PCR linkage
analysis was performed for a family, 6-13 (8.1 + 2.5) informative or semi-
informative STR markers (Table 2.1) were included in the following PGT cycle
for embryo analysis. STR marker informativeness rate was 53%. Disease

causative variant confirmation in family members was carried out via Sanger
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sequencing for single nucleotide variation (SNV) or by fragment size analysis

for trinucleotide repeat expansion.

2.2.2 Performance of clinical cases

As the first step for all embryo biopsies, WGA was carried out. For one
part of the embryos, WGA was done by MDA technology (SureMDA, Illlumina,
USA), for the rest it was carried out by OmniPlex linear WGA technology
(SurePlex, Illumina, USA) (Table 2.2). Embryo haplogroup analysis was carried
out, assessing informative markers found in a linkage step. Direct mutation
analysis for SNVs was carried out by standard Sanger sequencing protocol
(Sambrook and W Russell, 2001) or SNaPshot technology (Applied Biosystems,
USA). HTT gene (OMIM# 613004) CAG repeat expansion (RCV000030659,
HGVS nomenclature — NM_002111.6(HTT):c.53_55[(41_?)] (p.GIn40(41_?))
was detected by capillary electrophoresis, using the same protocol as for STR
marker loci amplification. Embryo chromosome analysis was performed

according to manufacturers’ (24Sure, [llumina, USA) protocol for aCGH.
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2.3 Results

2.3.1 Embryo PGT analysis

For all 62 embryo biopsies, WGA amplification performed either by
SureMDA or SurePlex kit was successful and eventually with a conclusive result.
In the case of MTM1 gene testing after two stimulation cycles, none
of the oocytes underwent successful fertilization. KRT14-case family underwent
only linkage analysis and now are preparing for the follicular stimulation.

Overall ADO rate was 4.74% (Table 2.2), exceeding 5% cut-off only
in Duchenne Muscular Dystrophy (DMD) case-1. Direct mutation testing was
done for all cases processed except for DMD-casel, in all cases, the direct
disease-causative variant testing complemented and matched haplotyping

results.

2.3.2 Comparison of two different WGA techniques

Both types of WGA were subjected to all four downstream applications —
Sanger sequencing, STR amplification and aCGH (Table 2.2). Our results show
that both WGA methodologies result in partial ADO when Sanger sequencing is
performed (Figure 2.1). Poor amplification of disease-causative allele can be
distinguishable as low-level electropherograms in otherwise clear profiles. One
TPP1-case sample resulted in complete disease-causative allele ADO even

despite the hemi-nested amplification approach.
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Figure 2.1 Sanger sequencing profiles of different WGA technologies

[\DMD €13

WGA for ACTA2-case embryo four (e4) performed by SurePlex amplification.
The upper panel electropherogram represents sequence gained by the forward primer;
lower panel represents the reverse primer sequence. Red arrows mark the partial loss
(partial allelic dropout, ADO) of a disease-causing allele. Haplotype analysis of given
embryo corresponds to heterozygous genotype. WGA for DMD case-two embryos
(e12 and e13) performed by SureMDA amplification. Given electropherograms
represent sequences gained by the forward primer. Red arrows mark partial ADO
of mutated allele — one nucleotide deletion. Mutated allele is only detectable as weak
background profile similar no noise. Haplotype analysis of given embryo
corresponds to heterozygous genotype.

We were also interested in comparing both WGA when subjected to
SNaPshot genotyping technology (Figure 2.2); the MDA product resulted
in comparable results in haplotyping and Sanger sequencing, all the genotypes
matched, whereas OmniPlex product repeatedly did not produce any reliable

profiles (not shown) in more than 60% of samples.
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Figure 2.2 Comparison of STR sizing (A) and SNaPshot (B)

Results are shown for DMD case-two embryos variant locus (one nucleotide
deletion). Whole-genome amplification performed by multiple displacement
amplification (MDA) technique. Profiles completely match between two technologies,
partial allelic drop out is visible on both profiles for the heterozygous embryo (e12).

Due to the nature of two WGA types, they arise in completely different
downstream STR amplification product sizing patterns performed on capillary
electrophoresis (Figure 2.3). Prominent false peaks arise due to polymerase
slippage during OmniPlex amplification and subsequent preferential
amplification of particular PCR products, making it possible to distinguish
the true alleles from the false ones only by comparing them to parental genomic

DNA samples run in parallel.
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Figure 2.3 Embryo haplotype analysis

(A) D10S17390 STR marker sizing by capillary electrophoresis.
Potential ADO in DXS1238 marker is indicated by arrow for SurePlex performed WGA.
(B) Arrow indicates true maternal allele for SurePlex performed WGA
whereas most prominent peaks are of artificial nature.
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3.1 Introduction

Miscarriage is a traumatizing experience for the patient and places
aburden on the practice of obstetrics and gynecology. The magnitude
of miscarriage appears to be increasing, particularly in developed countries
where the population is aging fairly rapidly and consequently the age of mothers
at childbirth is rising (Heazell et al., 2018). Fetal chromosomal aberrations play
the biggest role in the etiology of miscarriage. The majority of embryos with an
aberrant karyotype decease during the first weeks of pregnancy (Davis, Horvath
and Castafio, 2017; Romero et al., 2015).

The analysis of products of conception (POC) is clinically important to
establish the cause of early pregnancy loss and choose specific interventions
in subsequent natural or assisted conceptions. Various techniques are currently

used to detect chromosomal aneuploidies and structural rearrangements in POC.
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All of the techniques examining POC chromosomal composition have drawbacks
and especially can give misleading results when maternal DNA contamination
(commonly referred to as maternal cell contamination (MCC)) is overlooked.
A bias towards an increased number of normal female karyotype reports
in comparison to normal male karyotype reports has been noted (Lathi et al.,
2014; Bell et al., 1999; Jarrett et al., 2001). However, not all laboratories fully
address this important issue and its etiology (Nikitina et al., 2005).

While there are several factors possibly influencing the differing sex ratio
in spontaneous abortions (Jarrett et al., 2001) like unrecognized 46,XX molar
samples, maternal age at gestation, X-linked lethal mutations acting in utero, and
sex chromosome-specific failure of chromosome preparation (Eiben et al., 1990;
Hassold, Quillen and Yamane, 1983), studies have demonstrated that up to
59% of normal female karyotypes reported in POC testing are in fact cases of
MCC, when contamination completely obscures the fetal material. The overall
MCC rates of POC samples across different laboratories vary, but can occur
in as high as in 89.7% of cases (Lathi et al., 2014; Romero et al., 2015; Jarrett
et al., 2001), thus indicating different sample management and demonstrating
that the general awareness of MCC in this context is limited and needs to be
improved.

The recorded bias towards a higher number of 46,XX karyotype reports
together with the existing problem of MCC in POC testing points to a limited
awareness of the technical limitations and critical aspects of methodologies used
for POC analysis. Crucially, this failing needs to be acknowledged by laboratory
specialists and consulting physicians. Therefore, the aim of this study was to
develop a protocol for MCC assessment and to formulate POC material handling,

testing, and reporting recommendations.
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3.2 Materials and Methods

3.2.1 Patients and POC chromosome analysis

Patients experiencing miscarriage or spontaneous abortion before
the 13th week of gestation were recruited to the study. In total, 86 POC samples
were included in the study. Peripheral blood samples were obtained only from
47 women for genetic analysis of MCC, unfortunately, we could not obtain blood
specimens from rest of the patients. Visual appearance of the POC sample was
recorded as follows: “good quality chorion” — if presenting typical villous
morphology; “poor quality chorion” — if presenting tissue maceration and only
a few villi could be dissected; or “no chorion visualized” — if no tissues with
typical villous morphology could be localized. Tissue sampling was performed
for all the samples. Chromosome analysis was performed by aCGH for all
the POC samples following the manufacturer’s protocol [24sure; Illumina,

USA.

3.2.2 MCC testing system design

To test for MCC signs in samples where maternal DNA was available
(n=47), we designed a detection system employing fluorescent PCR with
visualization by capillary electrophoresis. The system encompassed
14 microsatellite (STR) loci, the AMEL region giving different amplicon
lengths on X and Y, and the SRY region for the more precise genotyping
of chromosome Y. MCC testing results were classified as follows: “MCC” —
in case of informative STR marker characterized by three alleles visible on
electropherogram, two of which match the alleles of the mother (or two alleles,
if mother was homozygous); “maternal genome only” — characterized by
the complete allelic match of the two samples across all loci; “no signs

of contamination” — characterized by the second allele in a fetus distinguishable
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from the mothers’ alleles across informative markers. The developed STR testing
system only allows for the qualitative not the quantitative evaluation of MCC

based on STR loci differences between the genomes being compared.

3.3 Results

3.3.1 Visual POC inspection and MCC genetic testing

POCs specimens are considered ones not containing any identifiable
material from the fetus proper (e.g. cord, amnion), but rather consisting of villi,
membranous material (Jarrett et al., 2001) and other tissues of unspecified origin.
Visual inspection of the primary POC material (n = 86) resulted in the following
observations: 55 were good quality samples, 19 compromised quality POCs with
signs of tissue maceration, and 12 samples where no tissue with typical villous
morphology could be detected — marked “no chorion”. Four formalin fixed
paraffin embedded (FFPE) samples were marked as compromised and one had
no signs of villi.

Forty-seven sample pairs (POC and maternal genomic DNA) subjected to
polymorphic microsatellite (short tandem repeat, STR) loci genotyping based
MCC detection protocol developed by us revealed that in 33 (70.2%) of the POC
samples maternal genome was not detected; of those, one was marked as
compromised quality, while the remainder demonstrated good quality chorions.
Eight samples (17.0%) showed the presence of MCC; of those, six were
classified as compromised quality chorions and two showed no villi upon visual
inspection; one sample with MCC was positive for the SRY region. Six POC
samples (12.8%) showed only maternal genome; three were of poor quality and
three showed no visual presence of villi. Theoretical probability of the assay
being not-informative i.e., giving false perception that fetal sample contains only

maternal genome, was calculated to be 1.9E-08. Thus, it can be assumed that
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MCC detection system provides reliable results and can be used with high

confidence.

3.3.2 Chromosomal microarray analysis

All POC samples (n = 86) were subjected to aCGH analysis irrespective
of biological material quality and MCC testing. In total, 34 samples corresponded
to normal female karyotype and 16 to normal male karyotype (sex ratio 2.1:1).
The remaining 36 (41.9%) samples exhibited some kind of chromosomal
abnormality, out of those 12 contained an XX sex chromosome set, 11 contained
XY (sex ratio 1:0.9), and 13 were associated with sex chromosome copy number
variations. The majority of chromosomal imbalances were autosomal trisomies,
followed by pure monosomy X (four cases). Of seven cases showing some kind
of sex chromosome discrepancy, four indicated a mosaic form of X monosomy —
arrmos(X)x1, while three cases were unable to be resolved using aCGH
analysis alone. Lastly, following structural aberrations were detected: loss of
8p23.2p11.21, gain of 22q13.2913.33, and combined gain of 11p15.5p15.2 and
15026.1926.3 in one sample.

3.3.3 Analysis of POC with high risk of MCC

A result indicative of the 46,XX karyotype should be treated with caution
since it might arise from the analysis of maternal cells, especially in samples
of unsatisfactory visual quality. As seen from the Figure 3.1, the poorer
the quality of the samples included in the analysis (visually inspected), the higher
the proportion of 46,XX samples and the lower the fraction of 46,XY and
chromosomally abnormal samples. This was also true for samples tested for
MCC if samples with partial MCC were included in the calculations.
A significant difference (p-value 0.02) in the observed genotypes distribution

was seen between the group having no signs of contamination upon MCC testing

37



and all samples group. 46,XY samples were completely absent in the groups
“Compromised quality + No chorion” and “No chorion”. The “Only maternal
genome” group was not included since it contained solely 46,XX results upon

aCGH testing as expected.

*

Samples tested for MCC Visually inspected samples

% Abnormal
results

- 46,XY

= 46,XX

Nosignsof  Nosignsof  Allsamples; Good quality Good + Compromised  No chorion;
contamination; contamination n=86 chorion; n=55 Compromised quality + No n=12
n=33 + MCC; n=41 quality; n=74 chorion; n=31

Figure 3.1 Distribution of karyotype results across
different POC evaluation groups

Samples were grouped based on the MCC testing results (no signs
of contamination; MCC; maternal genome only — not included in the figure since those
contains only 46,XX results as expected) and visual sample evaluation (good quality
chorion; compromised quality; no chorion). *Significant difference (p-value 0.02)
in the observed genotypes distribution was seen between the groups “No signs
of contamination” and “All samples”. MCC — maternal cell contamination.

The origin of cells / tissue having the 46,XY karyotype or any
chromosomal abnormality (n = 28) is indubitable (i.e. fetal). Figure 3.2 visually
represents that vast majority of these cases (82.1%) concentrated among samples
showing good visual quality and no signs of contamination upon MCC
investigation. Nevertheless, four cases (14.3%) were found amongst
compromised quality POC, three of them having a certain amount of MCC.
One case indicative of a sex chromosome discrepancy upon aCGH analysis was
localized in the “no chorion” group and also displayed MCC but was positive for
the SRY region. Based on standard criteria samples of compromised visual

quality would have been discarded (Romero et al., 2015), because having viable
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cells or POC with identifiable villi was crucial for cytogenetic and molecular
cytogenetic techniques, e.g. FFPE samples typically required pathologist
conclusion on fetal cells presence prior to DNA extraction. Here we demonstrate
that simple and quick step of MCC evaluation can rescue some percentage

of poor primary biological samples and increase number of correct diagnoses.

Maternal genome

only (6) 0 3383 2 ® 88
Mcc (8) 8 8 @ 2 46,XX
0 I'_-I-sz o gl 46.XY +
o 4 Pathological
No signs of +++ +# findings
contamination (33) L # #‘
823++¢+83 & 0
dF gk
8B o 8 2
2 b3
Good quality Compromised No chorion (5)
(32) quality (10)

Figure 3.2 Distribution of MCC-high and -low risk karyotypes
across different product of conception evaluation groups

Y-axis depicts sample evaluation based on MCC genetic testing using STR
genotyping. X-axis depicts visual examination of primary biological sample. MCC-high
risk are samples corresponding to “46,XX” karyotype (depicted as white X’s) can arose
from analysis of fetal cells or maternal cells thus masking any genuine fetal karyotype.

MCC-low risk samples are the ones showing 46,XY karyotype or any chromosomal
pathology (depicted as grey crosses). MCC — maternal cell contamination.
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4.1 Introduction

A distinguishable medical condition in obstetrics in which the cervix
spontaneously starts to dilate (open) and efface (become thinner) in the absence
of the signs and symptoms of labor is cervical insufficiency. The cervix,
a collagen-rich organ, must remain closed during pregnancy yet simultaneously
undergo a progressive physiological remodeling to prepare for the birth.
Physiological cervical remodeling along with uterine contractile activation are
the two key events facilitating the birth of a child (Word et al., 2007). In cases
of cervical insufficiency, dilation of the cervix occurs without painful uterine
contractions, leading to inability of the cervix to retain a term pregnancy.
Clinically relevant isolated cervical insufficiency occurs in about 1-2% of all

pregnancies, but is associated with as much as 5-15% of pregnancy losses
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in the second trimester (S. W. Wang et al., 2016; Mingione et al., 2003). In 2011,
routine recording of cervical ripening was recommended by the Global Alliance
to Prevent Prematurity and Stillbirth (Goldenberg et al., 2012), since a short
cervix is the best predictive factor for spontaneous preterm birth (PTB) (Di
Renzo, 2015). Epidemiological data show that fetuses/neonates with Ehlers-
Danlos syndrome (EDS), osteogenesis imperfecta, and restrictive dermopathy
are at an increased risk of adverse pregnancy outcomes including PTB, PPROM,
and cervical insufficiency (Anum et al., 2009; Young et al., 2007).

Without doubt, our current understanding of human cervix remodeling in
pregnancy is limited (Vink and Myers, 2018). This may be the reason for the bias
of studied genes in relation to cervical insufficiency and the surprisingly little
information that presently exists on the genetics of pathological cervical
remodeling during pregnancy.

Since common variants detectable by genome-wide association studies
(GWAS) typically explain only a minor proportion of the heritability of complex
diseases (Asimit and Zeggini, 2010), there is a hypothesis that the rare variants
in multiple genes implicated in PTB may cumulatively contribute to
the predisposition of delivering preterm (Strauss et al., 2018; Bezold et al., 2013).
We decided to test this hypothesis by performing next-generation sequencing
(NGS) of the DNA of females with a positive anamnesis of isolated non-
syndromic cervical insufficiency. Due to the lack of knowledge of genes
implicated in cervix functioning, we also conducted a systematic literature
analysis to derive all possible studies on the genetics of the cervix. Given
the described heritability of cervical insufficiency, the main questions we
addressed in this study were: i) are there genes reliably linked to cervical
insufficiency and, if so, what are their roles? and ii) how many cases of isolated

non-syndromic cervical insufficiency are attributable to these genetic variations?

41



4.2 Materials and Methods

4.2.1 ldentification of genes playing a role in the biology

of the cervix

We conducted a literature search according to the PRISMA guidelines
(Moher et al., 2009). Inclusion criteria: Study published in a peer-reviewed
journal; Study presents original data; Study concentrates on finding a genetic
cause of cervical insufficiency and / or preterm delivery; Study concentrates on
functional gene analysis of physiological cervical ripening, cervical
insufficiency, and / or preterm delivery as a source using cervical tissues. Only
human studies were included. Exclusion criteria: Study concentrates on
miscarriage and / or the first trimester of pregnancy; Study concentrates on
microRNA, IncRNA, cell-free DNA, ribosomal DNA, cervico-vaginal
microbiome, cancer analysis; Study is not in humans; Study is not available in
English. Based on the data obtained from all the eligible studies and additional
syndromic gene searches, we composed three different lists of genes according

to their relation to the genetics of the cervix.

4.2.2 Next-generation sequencing of patients
with cervical insufficiency

Subjects

The study recruited 21 females of Caucasian ethnicity with presentation
of painless cervical dilatation in the ongoing pregnancy and / or a positive
anamnesis of pregnancy loss and / or preterm delivery due to cervical

insufficiency without contractions in singleton pregnancies (Table 4.1).
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Table 4.1

Baseline demographic and clinical characteristics
of participants

Age, years 35+4.8
Weight, kg 73.2+16.7
Height, m 1.7+£0.05

BMI kg / m? 26+55

TP 45+£25

OP 1.0+1.1

TP-OP 35+22

EPL 05+1.0

LPL + PTB 19+17
CL,cm 153+0.5

* BMI — Body Mass Index; TP — Total Pregnancies; OP — Other Pregnancies including
legal abortion, indicated medical abortion and extra-uterine pregnancies; TP-OP — Total
Pregnancies excluding OP; EPL — Early Pregnancy Loss (< 12 weeks); LPL+PTB —
Late Pregnancy Loss (> 12 weeks <22 weeks) and Preterm Birth (< 37 weeks);
CL — Cervical Length.

Next-generation sequencing, bioinformatics analysis
and variant filtering

NGS analysis was carried out using Illumina’s TruSight One Sequencing
Panel Capture Kit (USA). Read mapping and variant calling were performed
using Sentieon’s DNAseq (Freed et al., 2017; Kendig et al., 2019) FASTQ to
VCF pipeline implemented on the DNAnexus cloud [USA]. The first filtering
step retained non-synonymous exonic variants or variants affecting splice
donor / acceptor sites (x 10nt) of canonical (longest) transcripts. Minor allele
frequency (MAF) cut-off <1% was applied to 1000 Genomes, ExAC, and
gnomAD genomic databases. The second filtering step retained variants covered
with at least 10 reads, with a variant allele frequency of at least 25%, and

excluded “benign” and “likely benign” variants of known clinical significance.
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Variant classification, prioritization, and gene set enrichment
analysis

Genetic variants were filtered using the three gene lists created by means
of the systematic literature analysis. The variants identified in genes from
the first and second lists were considered to be of great interest and were
consequently investigated more closely to discern the ones most likely to be
contributive to the patients’ phenotype. The pathogenicity of each variant from
this list was assessed manually by three independent evaluators according to
the American College of Medical Genetic (ACMG) guidelines (Richards et al.,
2015). To obtain unbiased information on pathway enrichments across the genes
having rare and deleterious variants in our cohort, we annotated genes using

the ConsensusPathDB interaction database (Kamburov et al., 2013).

4.3 Results

4.3.1 Gene analysis: genes linked to cervical insufficiency

are mostly syndromic

Altogether, only 12 genes were primarily identified in relation to cervical
insufficiency (Table 4.2.), with six being syndromic, i.e., COL1Al and COL3A1
causing EDS; FBN1 causing Marfan syndrome; ZMPSTE24 and LMNA causing
restrictive dermopathy; and MATR3 causing myopathy. COL3A1 was the only
gene with an established gene-phenotype role as shown through human
phenotype ontology (HPO) term ‘Cervical insufficiency’ (HP:0030009) along
with ‘Premature delivery because of cervical insufficiency or membrane
fragility’ (HP:0005267), ‘Uterine rupture’ (HP:0100718), and ‘Uterine prolapse’
(HP:0000139), and is known to cause EDS, vascular type (OMIM:130050).
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Table 4.2

Genes primarily linked to cervical insufficiency (first list of genes)

Gene Associations from the literature and additional searches*
Ehlers-Danlos syndrome; Cervical insufficiency; Preterm delivery;
COL1A1 PPROM; Physiological ripening of the uterine cervix; Physiological
pregnancy
Ehlers-Danlos Syndrome; Cervical insufficiency HP:0030009 /
Premature delivery because of cervical insufficiency or membrane
COL3A1 fragility HP:0005267 / Uterine rupture HP:0100718 / Uterine prolapse
HP:0000139; PPROM; Preterm delivery; Physiological ripening of the
uterine cervix; Physiological pregnancy; Premature uterine contractions
FBN1 Marfan §yndrome; Cervical insufficiency; PPROM; Premature uterine
contractions
Cervical insufficiency; Physiological ripening of the uterine cervix;
HIF1A S
Physiological pregnancy
IL10 Cervical insufficiency; Preterm delivery
IL1B Cer\_/ical ins_ufficiengy; Pr_eterm delivery; Physiological ripening of the
uterine cervix; Physiological pregnancy
IL6 Cervical insufficiency; Preterm delivery; Physiological ripening of the
uterine cervix; Physiological pregnancy
Restrictive Dermopathy; Premature delivery because of cervical
LMNA insufficiency or membrane fragility HP:0005267; Premature rupture of
membranes HP:0001788;
MATR3 Myopathy due to MATR3 mutations; Cervical insufficiency
MBL2 Cervical insufficiency; Preterm delivery
Cervical insufficiency; Preterm delivery; Physiological ripening of the
TGFB1 - = ; -
uterine cervix; Physiological pregnancy
Restrictive Dermopathy; Premature delivery because of cervical
ZMPSTE24 | insufficiency or membrane fragility HP:0005267; PPROM; Preterm

delivery

* HPO term indicated if reported in https://hpo.jax.org.

4.3.2 Patient NGS data analysis

Twenty heterozygous variants found in 14 of our patients (67%) and

the first and second lists of genes were subjected to a closer analysis as they were

considered most likely to contribute to the patients’ phenotype based on existing

knowledge (Table 4.3.). Fourteen variants were found in 10 genes known to

cause EDS, osteogenesis imperfecta, or Bethlem myopathy. Ultimately, based on
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a comprehensive curation of the variants’ pathogenicity, including known gene-
disease / gene-phenotype associations, gene expression patterns within cervical
tissues, and mechanisms of diseases of particular genes, etc., we assigned
a likelihood for contribution of the variant to the patient’s phenotype (last column
in Table 4.3). A variant was unlikely contributing (n=7) if classified as
benign / likely benign according to the manual pathogenicity curation, did not
show any or poor expression within the cervix, or known gene-disease / gene-
phenotype associations did not correspond to the phenotype of interest. A variant
needs further investigation (n=13) if it showed a theoretical potential to increase
susceptibility to the development of the phenotype of interest based on
the criteria assessed, but more data are required to declare the variant as

definitively contributive to the development of cervical insufficiency.
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4.3.3 Gene pathway enrichment analysis

To determine whether the genes having rare deleterious variants identified
in our highly selective patient cohort exhibited any phenotype-relevant pathway
enrichment, we annotated all the genes (n = 694) using the ConsensusPathDB
interaction database (Kamburov et al., 2013) with the TruSight One gene list
(n = 4810) as background. As illustrated by the 20 most significant entities,
the analysis revealed a high overrepresentation of pathways related to tissue
mechanical and biomechanical properties (collagens and proteoglycans,
integrins). There was not only high enrichment of ECM pathways, but also
of cell to ECM communication (e.g., hemidesmosomes, focal adhesion) and
basal membrane components (laminins). Moreover, a number of the pathways
identified here matched ones shown to be enriched with genes studied in relation
to the genetics of the cervix as identified from our literature search.
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5 General Discussion

5.1 Selecting the best technology for multifactor

preimplantation genetic testing

The first practical part of this thesis described in Chapter 2 addressed
the preimplantation embryo analysis for couples with an increased likelihood
of delivering a child with monogenic disorder. Apart from aiming to meet
the highest PGT safety standards, we prioritized the purpose of achieving desired
pregnancy for every couple. Since no existing testing systems were available on
the market, we designed the whole testing protocol from a scratch, at the very
beginning facing the challenge of choosing the right tools i.e., reagents and
methodologies. This is why we decided i) to compare the two most popular whole
genome amplification techniques on a subset of downstream applications and
ii) to share in detail our practical experience with those facing the same
challenge.

Subsequently, we were satisfied with our performance as eight couples
out of nine delivered healthy kids, which was confirmed postnatally. Only in one
case (MTM1) no oocytes were successfully fertilized perturbing the couple’s
opportunity to conceive. In addition, three embryo transfers resulted in a failed
implantation making the overall birth rate per embryo transfer 72.7%, which is
still above the average reported in the literature (Theobald, SenGupta and Harper,
2020; Butler et al., 2019). The small number of the cases processed makes it
difficult to predict the trend of high pregnancy rates in the long run, but we
associate those with the exclusion of embryonic factors of reproductive failure
in all transferred embryos (aneuploid embryo rate 37.5%). However, it is
highlighted that randomized controlled trials are needed to conclude a clinical
effect of PGT-A for PGT-M (Toft et al., 2020).
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Out of 73 embryos processed, 39 were amplified using MDA technology
and 34 — using SurePlex to assess the performance of both whole genome
amplifiers in the four different downstream applications and choose the most
suitable one. Our results reaffirm the known fact that the MDA amplifier is
suitable for locus-specific applications, as we demonstrate — regardless of the
downstream application technology, and SurePlex fully meets the criteria for
genomic applications like aCGH or NGS. Although in only two families we were
able to use both WGA methods simultaneously, we found it practical and
pragmatic as this allows for a more versatile PGT experience since chromosome
microarray analysis in the case of MDA is possible only for approximately two-
thirds of the cases and only for the whole chromosomes, but not the partial copy
number variations. As we cross-validated the performance of different
applications, we can conclude that both amplifiers can be used for any
downstream application with sensitivity good enough if best practice guidelines
of PGT-M (Hellani et al., 2004; Piyamongkol et al., 2003) are followed. After
all, our endeavors allow for the adaptation of the developed testing system for

virtually any single gene disorder.

5.2 Improving reliability of genetic testing

in early pregnancy loss

The next practical work described in Chapter 3 — genetic testing
of products of conception to exclude fetal chromosomal rearrangements — was
initiated due to a clinical demand. Despite the controversial status of POC testing
(Carp, 2007), there are scenarios where knowing the karyotype of a miscarried
fetus can help in clinical management (Lathi et al., 2012) since any prognosis is
empirical if the karyotype of the abortus is unknown. However, the known
problem of MCC can jeopardize the whole intention to provide the best

management to these patients.
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As aCGH was shown as a rescue karyotyping methodology (Kudesia
et al., 2014), we selected it as the most suitable tool for the clinical application.
However, soon after we faced the issue of an increased number of apparently
normal female karyotypes. POC testing demonstrates that modern technology
application can be disappointing if used without an understanding of the
peculiarities of the certain methodology and / or specifics of the particular
biological material. This forced us to pursue the development of a foolproof
protocol capable to acknowledge MCC in case of its presence for every sample.
The work resulted in the development of an MCC detection protocol which is
a low-resource setting in addition to any existing POC testing protocol that has
a considerable implication in improving clinical management of the patients
dealing with early pregnancy loss. Not only we offered a new set of polymorphic
STR markers as reliable as commercially available kits (e.g., Identifiler by
Thermofisher), but this is also a low-cost solution, which can be an important
consideration for certain countries. Our approach of aCHG combined with MCC
testing is an alternative between the SNP-arrays able to detect MCC
constitutionally (Lathi et al., 2014), but it is quite expensive and laborious, and
the cytogenetic testing, which leaves a significant proportion of samples without
an answer due to lost viability of the cells. Our practical recommendations on
how to reduce MCC in POC testing will be found useful by those only initiating
POC testing.
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5.3 Deciphering genetic etiology of cervical insufficiency

As described in Chapter 4, PTB is considered a multifactorial disorder.
From the genetic epidemiology, it is known that a substantial part of the etiology
of common diseases is a genetic risk behaving as a complex trait (Polychronakos,
2008). The identification of complex disease genes has largely relied on
population-based approaches, e.g., GWAS, mainly owing to their unbiased and
hypothesis-free nature (Agler and Divaris, 2020). Unfortunately, until now
GWAS failed to identify common alleles as reliable markers for PTB. The
condition causing PTB with an even less clear genetic background is cervical
insufficiency. We attempted to address its genetic etiology using NGS in 21 well-
phenotyped patients. It is important to admit that the topic of this study arose
from a prominent clinical need since the possibilities to timely predict and
prevent consequences of the condition in clinics currently are very limited due to
its unclear nature (Artymuk et al., 2019).

Since the gene number associated with cervical functioning at the
beginning of our study was countable on one hand, severely limiting NGS
analysis opportunities in our patients, we armed ourselves with the a priori
knowledge by performing comprehensive and systematic gene analysis. In total
we identified 12 genes primarily linked to cervical insufficiency, six of which
(COL1AL, COL3A1, FBN1, LMNA, MATR3, ZMPSTE24) were known to cause
certain collagenopathies, while MBL2 deficiency have been associated with
susceptibility to autoimmune and infectious diseases, IL6, IL1B, IL10 — are all
mediators of the inflammatory process, TGFB1 regulates cell proliferation and
growth, and HIF1A is a transcription factor. Further, we identified 91 genes
potentially linked to cervical insufficiency. Both gene lists subsequently were
used for NGS data analysis. After careful variant filtering, exploiting ACMG best
practice guidelines, we identified 13 deleterious variants of high interest

in 10 patients. Being apprehensive with the variant interpretation, we called these
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variants “variants showing a theoretical potential to increase susceptibility to the
development of the cervical insufficiency needing further investigation”. Most
importantly, 11 variants were in genes associated with EDS development and
two in genes associated with Osteogenesis imperfecta.

While collagen’s role has long been implicated in the development
of cervical insufficiency, direct evidence from clinical studies to this was largely
missing. We were first to attempt and demonstrate a rare variant involvement
in this phenotype development, since before only associations with common
collagen gene variants were described. Importantly, such implication of rare
variants not detectable by association studies into the biology of complex
phenotypes was predicted already long ago (Levy et al., 2007; Polychronakos,
2008).

After our manuscript publishing, another novel study aiming to identify
the molecular signature, through which cervix opening is being controlled under
progesterone and interleukin IL-1p signaling (Kniss and Summerfield, 2020),
came out indirectly supporting our findings. Evidence of the therapeutic utility
of progesterone for the prevention of preterm cervical ripening and preterm labor
in women at-risk is well known (Conde-Agudelo and Romero, 2016) because
progesterone receptor signaling underpins many of the physiological processes
opposing untimely cervical dilation (Word et al., 2007). However, unanswered
questions persist regarding the mechanisms through which progesterone acts.
The authors of the study exploited a primary culture model of human cervical
stromal fibroblasts treated with progesterone, interleukin-1p or the combination
of both. Results demonstrated that interleukin-1f induced differential expression
of extracellular matrix proteins, ECM-degrading enzymes, and enzymes
involved in  glycosaminoglycan biosynthesis  (particularly COL3Al
[HGNC:2201] — the only gene with an established gene-phenotype role as shown
through HPO term ‘Cervical insufficiency’, ELN [HGNC:3327], COL4Al
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[HGNC:2202], HAS2 [HGNC:4819] — all included in our gene lists, as well as
B4GALT1 [HGNC:924], CHST11 [HGNC:17422], EXT1 [HGNC:3512], FUT8
[HGNC:4019], and HS3ST3B1 [HGNC:5198]) — all to a lesser or higher degree
involved in extracellular matrix interactions, tissue mechanical and
biomechanical strength (Kniss and Summerfield, 2020). These findings echo our
pathway and GO enrichment analysis findings on the significance of the
collagen-related pathways in cervical remodeling, and also provide an insight
into the control of these events by the progesterone signaling (Kniss and
Summerfield, 2020).

Simultaneously with our manuscript, an interesting case-control study by
Ben-Zvi on the association of cervical insufficiency with pelvic organ prolapse
(POP) and urinary symptoms was published (Ben-Zvi et al., 2020).
The assessment demonstrated that women with a history of cervical
incompetence experienced a higher rate of POP and urinary symptoms (odds
ratio 12.8), demonstrating that both conditions have a similar pathophysiological
mechanism (Ben-Zvi et al., 2020). Indeed evidence exists that the integrity of the
pelvic organs and their supportive tissue is mostly maintained by the fibrillar
extracellular matrix components (Carley and Schaffer, 2000; X. Liu et al., 2006).
Similarly, as weakened connective tissue leads to cervical insufficiency, it cannot
properly support the organs resting on the pelvic floor leading to POP (Ben-Zvi
et al., 2020). Since we were fascinated by the preliminary results of our pilot-
study, it was decided to pursue a further investigation on the collagenopathic
nature of cervical insufficiency (FLPP Project Nr. 2020/1-0042, 2021-2023).
Currently a study design is under development, it also involves a comprehensive
assessment of the collagen-related phenotypical features of the patients including
POP and urinary symptoms evaluation. We look forward to the results and

opportunity to compare those with the findings of Ben-Zvi.
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Recommendations for assessing genetics of female
reproductive failure in research and clinics

1.

In order to robustly link the currently identified genes to female
reproductive failure phenotypes and use those as diagnostic markers
in a clinical setting, a standardized clinical validity assessment
of gene-disease relationships has to be performed.

In order to facilitate the development of the field of female
reproduction and stimulate personalized treatment application, best
practice guidelines on genetic testing in female reproductive failure
have to be updated.

All genetic testing and preferably any ART procedure should be
accompanied by genetic counselling to allow for the informed
reproductive decision making and avoid adverse reproductive
outcomes for the patients and their progeny.

Thorough patient phenotyping should be performed in research and
clinics to separate patients with highly expected genetic defect from
the ones whose phenotype is attributable to the external factors thus
increasing the likelihood to identify certain genetic marker.

Targeted NGS assays including well characterized genes
implementation into clinical practice will facilitate genetic cause
identification of female reproductive failure minimizing unnecessary
investigations and manipulations and thus accelerating turnaround

time to the proper reproductive solution.
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5.5 Finalizing remarks

An umbrella denominator of female reproductive failure covers extremely
diverse and distinct phenotypes, all of which might be influenced by
the individual’s genetic background. Genetic testing is becoming increasingly
requested in almost every step of failed female reproduction, from the non-
functioning ovaries through unsuccessful attempts to conceive, to a missed
pregnancy. Some genomic technologies are suitable to meet the increasing
demands of the field — each chapter of this thesis demonstrated a reliable
application of a certain methodology to the certain reproductive issue. It is
possible to conclude that the possessed hypothesis of the work — that advanced
genetic technologies could be successfully used to reliably assess several classes
of genetic variations perturbing female reproductive potential — is confirmed.

I anticipate that the number of genes discovered to date after an awaited
systematic gene-disease clinical validity evaluation will form the basis for the
targeted gene panels implementation in the nearest future. Together with updated
best practice guidelines and proper genetic counseling, this should increase the
number of positive diagnoses and patient-tailored ARTs usage, bringing the
overall wellbeing of reproductive medicine to a new level.

Disorders related to female reproduction, preventing natural propagation
of the causative variants, are expected to be highly heterogenous (Laissue, 2015).
In mice more than 500 genes have already been associated with female infertility,
many more disease genes are waiting to be identified in humans in the coming
years (Harper et al., 2018). To uncover this data, a variety of deliberative
genomic approaches and sophisticated study designs in large patient cohorts,

followed by functional validation studies, have to be exploited.
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Importantly, different approaches have to be applied when studying
inbred and outbred populations. In inbred populations, the majority
of the causative variants are biallelic gene disruptions, whereas in outbred
populations a combination of different disease mechanisms can be expected.
I believe that de novo variants are responsible for the development
of a proportion of female reproduction phenotypes in the outbred populations,
though this exciting hypothesis has to be adequately addressed. Moreover, there
are some indirect hints to this hypothesis unraveled by the EXAC consortium data
analysis. Respectively, in the human genome, there are 3230 genes identified to
be loss-of-function sensitive, with 72% of those having no associated human
disease phenotype. These genes not necessarily are disease genes, but the data
probably points to genes in which heterozygous loss of function has been
reproductively disadvantageous over recent human history (Lek et al., 2016).

To date, the total number of genes with phenotype-causing mutation
identified reaches more than 4000 (OMIM, 2020). Overall, there are more than
20000 genes in a human genome, meaning that more than 16000 genes without
known clinical significance still have the potential to be involved in female
reproduction as a single cause or a part of complex.

A variety of phenotypes and their genetic origins are to be discovered
which now are hindered from our eyes. For example, thirty per cent
of pregnancies are lost between implantation and the sixth week of pregnancy
(Nybo Andersen et al., 2000; Jeve and Davies, 2014), currently, this time span is
completely inaccessible for analysis, as is the moment of embryo-endometrial
talk. Similarly, there are no studies focusing on phenotypic effects of mosaicism
associated with human infertility. Could that explain the proportion
of the POF / POI cases?
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| believe, in the years to come, the number of novel genes described for
female reproductive failure will increase rapidly. Molecular and genetic
understanding of the patient's phenotype will provide unprecedented opportunity
to establish new targets for the therapy or prevention of certain conditions
in female reproduction failure, bringing personalized medicine to the forefront
of reproductive medicine.
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Conclusions

. MDA methodology performs better for single locus applications, while
SurePlex technology suits genomic application needs, usage of both
amplifiers simultaneously allows for a versatile and reliable analysis of
embryos to select ones free of single-gene disorders and chromosomal
aberrations facilitating healthy conception.

. Fourteen STR loci-based protocol for the detection of maternal cell
contamination in a combination with an array comparative genomic
hybridization reduces misdiagnosis in genetic testing for early pregnancy loss
and has implication to foster informed decision-making by clinicians and
patients.

. Systematic literature and gene analysis identified 11 genes primarily
associated with cervical insufficiency with the majority causing
collagenopathies, thus efficiently complementing patient NGS data analysis.
. Pathway enrichment analysis and stringent filtering pipeline of genes and
gene variants identified through NGS application discovered increased gene
variation burden in pathways related to tissue mechanical and biomechanical
strength and localized 13 sequence variants in genes causing
collagenopathies that potentially increase the likelihood of cervical

insufficiency development.
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