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SUMMARY

Brassinazole (Brz) is a specific inhibitor of the biosynthesis of brassinosteroids (BRs), which regulate plant

organ and chloroplast development. We identified a recessive pale green Arabidopsis mutant, bpg2-1

(Brz-insensitive-pale green 2-1) that showed reduced sensitivity to chlorophyll accumulation promoted by Brz

in the light. BPG2 encodes a chloroplast-localized protein with a zinc finger motif and four GTP-binding

domains that are necessary for normal chloroplast biogenesis. BPG2-homologous genes are evolutionally

conserved in plants, green algae and bacteria. Expression of BPG2 is induced by light and Brz. Chloroplasts of

the bpg2-1 mutant have a decreased number of stacked grana thylakoids. In bpg2-1 and bpg2-2 mutants, there

was no reduction in expression of rbcL and psbA, but there was abnormal accumulation of precursors of

chloroplast 16S and 23S rRNA. Chloroplast protein accumulation induced by Brz was suppressed by the bpg2

mutation. These results indicate that BPG2 plays an important role in post-transcriptional and translational

regulation in the chloroplast, and is a component of BR signaling.

Keywords: brassinosteroid, BR biosynthesis inhibitor Brz, GTPase, chloroplast biogenesis, chloroplast rRNA,

processing.

INTRODUCTION

The plant brassinosteroids (BRs) brassinolide, castasterone,

teasterone, and so on, are essential for plant growth and

development. The most active BR, brassinolide (BL), was

first isolated from pollen of Brassica napus (Grove et al.,

1979), and since then, more than 50 BRs have been isolated

from other plant species (Bajguz and Tretyn, 2003). Molec-

ular characterization of Arabidopsis BR biosynthetic mutants

has revealed the important role of BRs in photomorpho-

genesis, leaf development, stem elongation, root elonga-

tion, pollen tube growth, xylem differentiation, sterility and

senescence.

deetiolated2 (det2) was first thought to be an abnormal

photomorphogenesis mutant, and was later identified as the

first mutant deficient in BR biosynthesis (Chory et al., 1991).
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DET2 encodes a steroid 5a reductase involved in BR

biosynthesis that can also catalyze mammalian steroid 5a
reduction (Fujioka et al., 1997; Li et al., 1997). det2 has a

dwarf phenotype with dark-green round leaves and short

inflorescences in the light, and a short hypocotyl and open

cotyledons in the dark. In addition to these developmental

characteristics, dark-grown det2 mutants also show

increased expression of light-induced photosynthetic genes

and their translated proteins encoded by the nuclear and

chloroplast genomes. These results suggest that BR defi-

ciency regulates chloroplast gene expression, as photosyn-

thetic genes are normally not expressed in the dark. Based

on the det2 phenotype, several BR-deficient mutants have

been isolated, such as the BR biosynthesis mutants dwf4

(Azpiroz et al., 1998; Choe et al., 1998) and cpd (Szekeres

et al., 1996), as well as BR-insensitive mutants such as the

BR signaling mutants bri1 (Clouse et al., 1996; Li and Chory,

1997) and bin2 (Li et al., 2001; Li and Nam, 2002). These BR

mutants generally show abnormal development in the light

and de-etiolation in the dark. Previous characterization of the

chloroplast in BR mutants has been limited, but it is

necessary to further analyze the relationship between chlo-

roplast development and BR.

Brassinazole (Brz) is a triazole compound that specifically

inhibits BR biosynthesis by blocking the cytochrome P450

steroid C-22 hydoxylase encoded by DWF4/CYP90B1 (Asami

et al., 2000, 2001). In the dark, Brz-treated Arabidopsis has

open cotyledons and a short hypocotyl similar to BR-

deficient mutants (Nagata et al., 2000). After growth in the

dark for 40 days, plants treated with Brz develop true leaves

with epidermal cells, guard cells, trichomes, palisade paren-

chyma cells and spongy parenchyma cells. This phenotype

in Arabidopsis can be rescued by addition of BR (Asami and

Yoshida, 1999).

Recently, the mechanism of BR signal transduction in

plant development has been analyzed in detail using chem-

ical genetics to screen for mutants with altered responses to

Brz in darkness at the germination stage. When grown in

medium containing Brz, wild-type plants had short hypoco-

tyls, but a mutant identified by the screen, Brz-insensitive-

long hypocotyl 1 (bil1-D) had a long hypocotyl in the dark

(Asami et al., 2003). bil1-D has the same mutation as

brassinazole-resistance 1-1D (bzr1-1D), and BZR1 encodes

a functional transcription factor with dual roles in regulating

BR biosynthesis genes and growth responses (Wang et al.,

2002; He et al., 2005). BES1 was isolated from the mutant

bri1-EMS suppressor 1 (bes1-D), and is a semi-dominant

suppressor of bri1. BES1 encodes a close homolog of BZR1/

BIL1 but regulates BR response genes in plant development

(Yin et al., 2002).

Here, we isolated and characterized a recessive Arabid-

opsis mutant, bpg2, which has pale green cotyledons and is

insensitive to Brz-induced promotion of greening. BPG2

encodes a chloroplast protein that specifically regulates

accumulation of 16S and 23S rRNA but not mRNA from the

chloroplast genome. Brz-inducible protein accumulation in

chloroplasts is suppressed by the bpg2 mutation. We

discuss the important role of BPG2 in chloroplast develop-

ment in BR signaling.

RESULTS

Isolation of the bpg2 mutant

Brz binds directly to the cytochrome P450 steroid C-22

hydroxylase encoded by the DWF4 gene, and specifically

inhibits BR biosynthesis (Asami et al., 2000, 2001). Brz

treatment reduces BR content in plant cells and causes the

same de-etiolation and dwarf phenotype as the BR-deficient

mutant. In addition to these morphological changes, Brz

treatment also induced chloroplast gene expression in the

dark for both wild-type and the BR-deficient mutant (Nagata

et al., 2000). These results and research on BR-deficient

mutants suggest that BR plays a role in regulating chloro-

plast development. In the light, Brz also promotes greening

of cotyledons of wild-type Arabidopsis. If the pale green

phenotype of a mutant is independent of BR signaling, the

pale color will be restored to darker green by Brz. Pale green

mutants that are not recoverable by Brz may have decreased

or disrupted BR signaling for chloroplast regulation.

We screened approximately 10 000 Arabidopsis activa-

tion-tagged lines (Nakazawa et al., 2003) and isolated a

recessive mutant, Brz-insensitive-pale green2-1 (bpg2-1),

which retained pale green cotyledons when grown with Brz

in the light (Figure 1c,d). The cotyledons of bpg2-1 seedlings

were paler green that those of wild-type seedlings on media

containing various concentrations of Brz (Figure 1a–d).

For detailed analysis of cotyledon greening, endogenous

levels of chlorophyll a and b in wild-type and bpg2-1

seedlings were measured with or without Brz in the light

(Figure 1e,f). bpg2-1 accumulated approximately half the

amount of chlorophylls a (Figure 1e) and b (Figure 1f)

compared to wild-type seedlings. In wild-type seedlings,

endogenous chlorophyll a and b levels were increased

by Brz treatment, but were not increased in bpg2-1 seed-

lings. When grown on soil, bpg2-1 produced pale green

semi-dwarf rosette leaves (Figure 1h) and inflorescences

(Figure 1j). This phenotype differed from the dwarf pheno-

type of the BR-deficient mutant det2 and the BR-insensitive

mutant bri1.

In general, BR-deficient mutants have a short hypocotyl in

the dark, but the bpg2-1 hypocotyl was elongated, as in the

wild-type (data not shown). This indicates that BR biosyn-

thesis was normal in the bpg2-1 mutant, and that BPG2 is

not involved in BR biosynthesis. Furthermore, when bpg2-1

was grown with Brz in the dark, bpg2-1 showed the same

short hypocotyl as the wild-type plants (data not shown).

These results suggest that Brz binds to cytochrome P450

C-22 hydroxylase and inhibits BR biosynthesis in bpg2-1.
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bpg2-1 is thus insensitive to Brz effects, especially with

respect to chloroplast regulation, and the semi-dwarf

phenotype might be a secondary effect of chloroplast

deficiency. From these analyses, it can be inferred that, after

the initial perception of BR by the receptor BRI1, BR

signaling can be separated into at least two phases: devel-

opmental regulation and chloroplast regulation, and that

BPG2 appears to play a major role in chloroplast regulation

by BR signal transduction.

BPG2 is a GTPase that is evolutionally conserved in plants,

green algae and bacteria

Co-segregation of the Brz-insensitive, pale green phenotype

with a selection marker after back-crossing with the wild-

type indicated that bpg2-1 was a recessive mutant with a

single T-DNA insertion. To identify the bpg2-1 mutation, we

amplified a T-DNA insertion site on the bpg2-1 genome by

TAIL-PCR (Liu et al., 1995) with the left border of T-DNA-

specific primers and a combination of degenerate primers,

and isolated the fragment. The identified T-DNA insertion

site was in the third intron of At3g57180 (Figure 2a). PCR

results indicated that bpg2-1 lacked an enhancer region of

T-DNA (data not shown) and was a recessive mutant, sug-

gesting that the bpg2-1 phenotype was caused by disruption

of At3g57180 by the T-DNA insertion. Expression of full-

length At3g57180 in the bpg2-1 mutant was not detected by

RT-PCR (Figure 2b). To confirm that disruption of At3g57180

is responsible for the bpg2-1 mutant, we isolated the

knockout mutant bpg2-2 (SALK_068713) from a mutant pool

of T-DNA insertion lines obtained from the Arabidopsis

Biological Resource Center (Figure 2a). RT-PCR indicated

that expression of At3g57180 was also very low in the bpg2-

2 mutant (Figure 2b), and a pale green phenotype similar to

bpg2-1 was observed (Figures 1i,j and 3e,f,k–m).

BLAST searches for the BPG2 amino acid sequence

identified similar genes in Arabidopsis (AGI codes

At4g10620, unknown protein; At3g47450, RIF1/NOS1/

NOA1) (Flores-Pérez et al., 2008), rice (Oryza sativa), Medi-

cago truncatula, grape (Vitis vinifera), the moss Physcomit-

rella patens, and the green algae Ostreococcus lucimarinus

and Chlamydomonas reinhardtii (Figure 2c). Further

searches suggested that some bacteria had BPG2-homolo-

gous genes that included a YqeH-type GTPase in Gram-

positive bacteria such as Bacillus subtilis (Uicker et al., 2007;

Loh et al., 2007; Figure 2c). The YqeH-type GTPase of

bacteria has a GTP-binding domain with a G4-G1-G2-G3

motif and an N-terminal putative zinc finger motif with a

conserved CXXCXnCXXC sequence (Loh et al., 2007). The

four GTP-binding domains and the zinc finger motif were

also found in a putative BPG2 amino acid sequence

(Figure 2d).

To confirm that disruption of the GTPase homologous

gene caused the bpg2-1 and bpg2-2 mutant phenotype, the

BPG2 candidate cDNA was placed under the control of

the CaMV 35S promoter and transformed into bpg2-1 and

bpg2-2 by Agrobacterium-mediated transformation. The

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

(j)

Figure 1. Phenotype of bpg2 mutants.

(a–d) Cotyledons of wild-type (a, b) and bpg2-1 (c, d) grown on half-strength MS medium under long days (16 h light/8 h dark) without Brz (a, c) or with 1 lM Brz (b, d)

for 4 days. Scale bars = 1 mm.

(e, f) Endogenous contents of chlorophyll a (e) and chlorophyll b (f) of wild-type (WT) and bpg2-1 plants grown without Brz (0 lM) or with Brz (0.1 and 1 lM) for 4 days

under long days (16 h light/8 h dark). Error bars indicate SE.

(g–i) Wild-type (g), bpg2-1 (h) and bpg2-2 (i) seedlings grown under long days (16 h light/8 h dark) on soil for 2 weeks. Scale bars = 10 mm.

(j) Wild-type, bpg2-1 and bpg2-2 plants grown under long days (16 h light/8 h dark) on soil for 3 weeks. Scale bar = 5 cm.
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(d)
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resulting bpg2-1:35S-BPG2 and bpg2-2:35S-BPG2 plants

showed a normal green phenotype, confirming that

decreased chlorophyll a and b levels in bpg2-1 and bpg2-2

were rescued by BPG2 (Figure 3g–j,m).

The bpg2:35S-BPG2 transformants also showed an

increase in chlorophyll levels following Brz treatment, and

rescue of Brz sensitivity in bpg2-1 and bpg2-2 (Figure 3k,l).

Furthermore, the semi-dwarf rosette leaves of 3-week-old

bpg2-1 and bpg2-2 were rescued by BPG2 (Figure 3m and

Table 1). Thus, these results show that the normal BPG2

gene was able to complement the bpg2 mutant and rescue

the wild-type phenotype.

To investigate the contribution of the various domains to

the role of BPG2 in chloroplast development, conserved

amino acids in the zinc finger N-terminus (C98A, G100A,

C101A and G102A), zinc finger C-terminus (C242A, R244A

and C245A) and in the GTP-binding motifs G4 (K335A and

D337A), G1 (G404A and K405A), G2 (T431A and T432A) and

G3 (D450A and G453A) were replaced by alanine (Figure 4a),

and constructed under the control of the CaMV 35S

promoter and fused with the gene encoding green fluores-

cent protein (GFP) of the pGWB5 vector (Nakagawa et al.,

2007). These 35S::mutated BPG2-GFP fusion constructs

were transformed into the bpg2-1 mutant (Figure 4b–g).

Mutants bpg2-1 with 35S::BPG2-GFP (Figure 4h) and bpg2-2

with 35S::BPG2-GFP (Figure 4i) showed a wild-type normal

green phenotype compared to the bpg2-1 pale green

phenotype (Figure 4j). However, when mutated BPG2 genes

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l) (m)

Figure 3. Effect of Brz on bpg2-1, bpg2-2, a complementation line of bpg2-1 and a complementation line of bpg2-2.

(a–j) Cotyledons of wild-type (a, b), bpg2-1 (c, d), bpg2-2 (e, f), a complementation line of bpg2-1 (g, h) and a complementation line of bpg2-2 (i, j) grown on half-

strength MS medium under long days (16 h light/8 h dark) without Brz (a, c, e, g, i) or with 1 lM Brz (b, d, f, h, j) for 5 days. Scale bars = 1 mm.

(k, l) Endogenous contents of chlorophyll a (k) and chlorophyll b (l) of wild-type (WT), bpg2-1, bpg2-2, a complementation line of bpg2-1 (bpg2-1:35S-BPG2) and a

complementation line of bpg2-2 (bpg2-2:35S-BPG2) grown without Brz (0 lM) or with Brz (1 lM) for 4 days under long days (16 h light/8 h dark). Error bars indicate

SE.

(m) Rosette leaf morphology of 3-week-old plants of wild-type (WT), bpg2-1, bpg2-2, bpg2-1:35S-BPG2 and bpg2-2:35S-BPG2. Scale bar = 1 cm.

Figure 2. Identification and structure of BPG2.

(a) Gene structure of BPG2 indicating T-DNA insertions causing mutations. T-DNA causing the bpg2-1 mutation was inserted 1922 bp upstream of the start codon

(ATG). T-DNA causing the bpg2-2 mutation was inserted 113 bp downstream of the start codon.

(b) RT-PCR analysis of BPG2 expression in wild-type (WT), bpg2-1 and bpg2-2. ACT2 was used as an internal control.

(c) Phylogenic analysis of the relationship between BPG2 and BPG2 homologs in plants, green algae and Gram-positive bacteria. GenBank accession numbers:

Oryza sativa 1, CM000143; O. sativa 2, NM_001064237; Vitis vinifera 1, CU459251; V. vinifera 2, CU459220; Medicago truncatula, AC158502; Physcomitrella patens,

XM_001758456; Ostreococcus lucimarinus, XM_001418245; Chlamydomonas reinhardtii, XM_001700742; Listeria monocytogenes, NC_003210; Exiguobacterium

sibiricum, NC_010556; Lactobacillus casei, NC_008526; Enterococcus faecium, NZ_AAAK03000016; Lactococcus lactis, NC_009004; Streptococcus sanguinis,

NC_009009; Geobacillus thermodenitrificans, NC_009328; Lysinibacillus sphaericus, NC_010382; Staphylococcus haemolyticus, NC_007168; Oceanobacillus

iheyensis, NP_692909; Bacillus subtilis, Z99117.

(d) Sequence alignment of BPG2 and BPG2 homologs in plants and Bacillus subtilis YqeH. Colored bars under the sequence indicate the zinc finger domain (gray)

and the GTP-binding motifs G4 (black), G1 (blue), G2 (red) and G3 (green).

Table 1 Leaf sizes of wild-type, bpg2-1, bpg2-2, bpg2-1:35S-BPG2
and bpg2-2:35S-BPG2

Plant
Leaf width
(mm)

Leaf length
(mm)

Ratio
(length:width)

Wild-type 10.34 � 0.59 18.45 � 0.87 1.80 � 0.07
bpg2-1 9.69 � 0.28 14.05 � 0.39 1.46 � 0.04
bpg2-2 9.57 � 0.34 13.40 � 0.63 1.41 � 0.07
bpg2-1:35S-BPG2 12.27 � 0.67 21.95 � 1.19 1.82 � 0.11
bpg2-2:35S-BPG2 11.11 � 0.38 23.12 � 1.01 2.12 � 0.16

Data are means � SE (n = 12 for each genotype).
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driven by the CaMV 35S promoter were expressed in the

bpg2-1 mutant (Figure 4l), all six transformants remained

pale green and could not be restored to the wild-type

phenotype (Figure 4b–g). Furthermore, chlorophyll levels in

the transformants remained low and Brz sensitivity was not

rescued in bpg2-1 and bpg2-2 (Figure 4m,n). These results

suggest that the GTP-binding motifs and zinc finger motif

play important roles in chloroplast development and are

regulated by BPG2.

Localization of BPG2 and function in chloroplast

differentiation

To determine the subcellular localization of the BPG2 pro-

tein, a translational BPG2-GFP fusion was expressed under

the control of the constitutive CaMV 35S promoter and

introduced into wild-type Arabidopsis (Figure 4h). GFP flu-

orescence was detected in chloroplasts of guard cells of

35S::BPG2-GFP plants (Figure 5b,c), and the signal was

merged with chlorophyll autofluorescence (Figure 5a–d).

These results suggest that the BPG2 protein is localized in

chloroplasts.

The pale green phenotype of bpg2 mutants and localiza-

tion of BPG2 protein suggest that BPG2 plays a role in

chloroplast morphology. To analyze the role of BPG2 in

chloroplast differentiation, electron microscope observa-

tions of the wild-type and the bpg2-1 mutant were per-

formed (Figure 5i,j). Abnormal chloroplasts were observed

in bpg2-1 leaves. While 3-week-old wild-type chloroplasts

had stacked grana thylakoids (Figure 5i), plastids of the

bpg2-1 mutant had fewer stacked grana in the thylakoids,

more starch grains, and more and larger plastoglobules

(Figure 5j). These results suggest that BPG2 is necessary for

normal chloroplast differentiation.

Tissue-specific and light-regulated expression of BPG2

To analyze the possible function of BPG2 in plastids in var-

ious tissues, expression of BPG2 under various conditions

was examined using RT-PCR (Figure 6). The BPG2 gene was

highly expressed in stems, petioles, rosette leaf blades,

cauline leaves and flowers of 3-week-old wild-type plants,

but only faintly in roots (Figure 6a). As BPG2 gene expres-

sion was found in all green tissues, the effect of light on the

(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l)

(m)

(n)

Figure 4. Phenotype of bpg2-1 transformed with the wild-type BPG2 gene and the BPG2 gene mutated in the zinc finger domain and GTP-binding motifs.

(a) Predicted domain structure of BPG2 with targeted mutagenesis in the zinc finger motif or GTP-binding domains. The conserved amino acid sequences were

changed to alanine.

(b–g) bpg2-1 plants transformed with 35S::mutated BPG2-GFP with mutations in the zinc finger N-terminus (b), the zinc finger C-terminus (c), and the G4 (d), G1 (e),

G2 (f) and G3 domains (g). The 35S::wild-type BPG2–GFP construct was transformed into bpg2-1 (h) and bpg2-2 (i). Control plants that were not transformed were

bpg2-1 (j) and wild-type Arabidopsis Col-0 (k). These plants were grown under long days (16 h light/8 h dark) on soil for 2 weeks.

(l) RT-PCR analysis of expression of BPG2 and mutated BPG2 in transformed bpg2-1 and wild-type. Expression of each mutated BPG2 was detected in bpg2-1

transformed with BPG2 cDNA mutated in the zinc finger N-terminus (ZN), the zinc finger C-terminus (ZC), and the G4, G1, G2 and G3 domains. Each mRNA was

amplified using bpg2-specific and GFP-specific primers. Expression of wild-type BPG2 was detected in wild-type Arabidopsis but not in transformed bpg2-1 plants.

ACT2 was used as an internal control.

(m, n) Endogenous contents of chlorophyll a (m) and chlorophyll b (n) of wild-type (WT), bpg2-1 and the six transformants grown without Brz (0 lM) or with Brz

(1 lM) for 4 days under long days (16 h light/8 h dark). Error bars indicate SE.
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expression of BPG2 was analyzed using total RNA isolated

from seedlings harvested at 0, 0.5, 1, 2 and 4 h after transfer

of dark-grown plants to light (Figure 6b). In light-stimulated

plants, two nuclear-encoded genes, CAB, the light-harvest-

ing chlorophyll a/b binding protein, and rbcS, the small

subunit of ribulose-1,5-bisphosphate carboxylase oxygen-

ase (Rubisco), began to be expressed after 0.5 and 2 h of

light stimulation (Figure 6b), and expression of BPG2 con-

tinued after 2 h of light treatment. This is consistent with the

expression patterns of CAB and rbcS (Figure 6b).

Dark-grown BR-deficient mutants expressed chloroplast

genes, such as CAB and rbcS (Chory et al., 1991; Szekeres

et al., 1996), and dark-grown wild-type plants treated with Brz

accumulated more Rubisco protein than the wild-type with-

out Brz (Nagata et al., 2000). To study the effect of BR on BPG2

gene expression, we performed RT-PCR analysis of wild-type

plants grown in the dark with Brz (Figure 6c), and found that

expression of CAB and rbcS was increased by Brz. DWF4

encodes cytochrome P450 (CYP90B1), and its expression is

increased by feedback mechanisms in BR-deficient mutants.

These expression levels showed that Brz treatment of

dark-grown wild-type caused BR deficiency and promoted

chloroplastic gene expression in the dark (Figure 6c). In the

Brz-treated tissues, BPG2 gene expression actually increased

(Figure 6c), suggesting that BPG2 gene expression is nega-

tively regulated by BR and positively by light in green organs.

Expression of genes encoded by the chloroplast genome

of the bpg2 mutant

The plastid genome of Arabidopsis encodes approximately

87 open reading frames (ORFs) and four rRNAs on 154 kbp of

DNA (Arabidopsis Genome Initiative, 2000). Transcriptional,

post-transcriptional and translational regulatory mecha-

nisms in chloroplasts have been analyzed (Leister, 2003), but

molecular mechanisms for chloroplast regulation by bras-

sinosteroid remain unknown. To investigate the function of

BPG2 responsible for the pale green phenotype, we per-

formed expression analysis of chloroplast-encoded photo-

synthesis genes by Northern blot analysis using wild-type

and bpg2 plants (Figure 7). No reduction in expression of

chloroplast-encoded rbcL, the large subunit of Rubisco, and

psbA, a D1 protein of photosystem II, was found in bpg2

mutants compared to the wild-type in seedlings (Figure 7a)

or rosette leaves at the reproductive stage (Figure 7b). There

was also no reduction in expression of CAB and rbcS in the

mutants (Figure 7a,b). Brz stimulated increased expression

of psbA, rbcL, CAB and rbcS in bpg2 mutants to the same

degree as in wild-type (Figure 7c).

Essential role of BPG2 for chloroplast rRNA maturation

The chloroplast genome encodes 16S and 23S rRNA. These

rRNAs are encoded in a single operon with three tRNAs, and

are expressed as a 7.4 kb precursor that is post-transcrip-

tionally processed (Figure 8a) (Strittmatter and Kössel,

1984). We performed Northern blot analysis of chloroplast

rRNA in wild-type and bpg2 mutants at the seedling and

reproductive stages (Figure 8b,c) using the specific probes

(I–V) indicated in Figure 8a.

When blots were analyzed using a 16S rRNA-specific

probe (probe I), the levels of mature 16S rRNA transcript

(1.5 kb) were lower in bpg2 mutants compared with the wild-

type at both seedling and reproductive stages (Figure 8b,c).

(a) (b)

(e) (f)

(i)

(c) (d)

(g) (h)

(j)

Figure 5. Localization of BPG2 protein in chlo-

roplasts, and morphology of the chloroplast in

bpg2-1.

(a–h) Confocal laser scanning microscopy of

guard cells in 35S::BPG2-GFP transformants (a–

d) and wild-type plants (e–h). Plants were grown

for 2 weeks on half-strength MS medium con-

taining kanamycin. (a, e) Red autofluorescence of

chlorophyll. (b, f) Green fluorescence of GFP.

(c, g) Bright-field images. (d) Merged image of

(a–c). (h) Merged image of (e–g). Scale

bars = 5 lm.

(i, j) Electron microscopy of wild-type (i) and

bpg2-1 (j) chloroplasts in rosette leaves. Plants

were grown on soil for 3 weeks under long-day

conditions. PG, plastoglobule; S, starch granule.

Scale bars = 1 lm.
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The accumulation of a 1.7 kb precursor transcript was higher

in bpg2 than in wild-type. Mature 16S rRNA is generated by

endonucleolytic cleavage of the intergenic space of a

primary transcript, approximately 180 bp downstream of

the mature 16S 3¢ end. To identify the 1.7 kb RNA band as

pre-16S rRNA, blots were analyzed using probe II, which is

specific to the intergenic spacer of the 16S rRNA flanking

region. Probe II detected 1.7 kb RNA in bpg2 mutants, but

not in the wild-type, suggesting that pre-16S rRNA accumu-

lates in bpg2 (Figure 8b,c).

When blots were analyzed with a 23S rRNA-specific probe

(probe III), 23S rRNA accumulated as seven major tran-

scripts, i.e. 3.2, 2.9, 2.4, 1.7, 1.2, 1.0 and 0.5 kb bands

(Figure 8a). At both seedling and reproductive stages, no

differences in the size of the seven transcripts between wild-

type and the bpg2 mutant were observed. The 3.2 kb band,

which represents a 23S–4.5S di-cistronic precursor, accu-

mulated at levels that were approximately three times

greater in bpg2 mutants than in the wild-type at the seedling

stage (Figure 8b), and approximately 8.5 times greater in

bpg2 mutants at the reproductive stage (Figure 8c). The

2.4 kb band decreased in bpg2 at the seedling stage

(Figure 8b), but the 2.9 and 2.4 kb bands increased four-

and eightfold, respectively, in bpg2 mutants at the repro-

ductive stage (Figure 8c). The levels of the 1.2 and 1.0 kb

bands, which are produced by ‘hidden breaks’ after incor-

poration into ribosomes, did not differ between bpg2

mutants and the wild-type (Figure 8b,c).

When blots were analyzed using 4.5S and 5S rRNA-specific

probes (probes IV and V), the 3.2 kb band that represents the

23S–4.5S precursor was also detected in bpg2 mutants

(Figure 8b,c).Pre-maturedprecursorbandswerenotdetected

inbpg2usingthe5SrRNA-specificprobe,butdecreasedlevels

of matured 5S rRNA were found in bpg2 mutants at the

seedling stage, with increased levels of matured 5S rRNA in

bpg2 mutants at the reproductive stage (Figure 8b,c). These

results suggest that BPG2 protein plays an important role in

processing or maturation of chloroplast rRNA.

Decreased accumulation of chloroplast proteins in bpg2

To test whether abnormal rRNA processing or maturation

in bpg2 chloroplasts has an effect on chloroplast protein

(a)

(b)

(c)

Figure 6. Inducible expression of BPG2 by light and Brz.

(a) RT-PCR analysis of BPG2 gene expression in various organs: root (R), stem

(S), rosette leaf blade (LB), rosette leaf petiole (LP), cauline leaves (CL) and

flowers (F) of wild-type Arabidopsis. ACT2 was used as an internal control.

(b) RT-PCR analysis of expression of BPG2, CAB and rbcS after exposure to

light. Total RNAs were extracted from the wild-type germinated in the dark for

7 days and exposed to light for 0, 0.5, 1, 2 or 4 h, and from 7-day-old wild-type

plants grown under long-day conditions (16 h light/8 h dark) (L).

(c) RT-PCR analysis of expression of BPG2, CAB, rbcS and DWF4 in plants

treated with Brz. Total RNAs were extracted from wild-type germinated in the

dark for 7 days with 0, 0.1, 1 or 3 lM Brz.

(a) (b)

(c)

Figure 7. Chloroplast gene expression in bpg2 mutants.

Total RNA was extracted from light grown 4-day-old seedlings (a), 3-week-old

rosette leaves (b) and dark-grown 5-day-seedlings (c) of wild-type (WT),

bpg2-1 and bpg2-2. Northern blot analysis was performed using probes for

psbA and rbcL, encoded in the chloroplast, and rbcS, CAB and 18S rRNA,

encoded in the nucleus.

(c) Seedlings were germinated with 0 or 1 lM Brz in the dark.
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accumulation, total protein from bpg2 mutants and

wild-type was analyzed by immunoblotting (Figure 9). The

level of the photosystem II D1 protein encoded by psbA

was markedly lower in bpg2 mutants than in the wild-type

at both seedling (Figure 9c) and reproductive stages

(Figure 9d). The level of the thylakoid light-harvesting

chlorophyll a/b binding protein (LHCP) encoded by CAB

was slightly decreased in bpg2 in both seedling

(Figure 9e) and rosette leaves (Figure 9f). Accumulation of

the Rubisco large subunit (LSU) protein encoded by rbcL

and the Rubisco small subunit (SSU) protein encoded by

rbcS was lower in bpg2 mutants at both seedling

(Figure 9g) and reproductive stages (Figure 9h). These

results show that translation of chloroplast proteins

encoded by the chloroplast genome decreased in bpg2

chloroplasts.

(a)

(b)

(c)

Figure 8. Accumulation of pre-mature chloroplast rRNA in bpg2.

(a) Diagram of the rRNA operon, and sizes of the transcripts (kb) shown in (b, c). The locations of probes (I–V) used for Northern blot analyses are indicated by

color bars: I (red), II (yellow), III (purple), IV (blue) and V (green).

(b) Northern blot analysis of 4-day-old seedlings of wild-type (WT), bpg2-1 and bpg2-2. An 18S standard was used to determine equal loading. The 3.2 kb band that

is increased in the mutants is indicated by an asterisk and the 2.4 kb band that is decreased in the mutants is indicated by an open triangle. Transcripts with a

hidden break are indicated by filled triangles.

(c) Northern blot analysis of 3-week-old rosette leaves of wild-type (WT), bpg2-1 and bpg2-2. The bands of 3.2, 2.9 and 2.4 kb that are increased in the mutants

are indicated by asterisks, and transcripts with a hidden break are marked by filled triangles.
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Chloroplast protein accumulation was not increased by Brz

in bpg2 mutants

To analyze BR-mediated BPG2 function on chloroplast

protein accumulation, we performed an immunoblot analy-

sis of seedlings of wild-type and bpg2 mutants in the light

with and without Brz (Figure 10). In the wild-type, the level of

Rubisco LSU protein from Brz-treated seedlings increased

approximately 1.4-fold and that of D1 protein increased

approximately 1.3-fold compared to that of seedlings that

were not treated with Brz (Figure 10a,b). In bpg2 mutants,

the levels of Rubisco LSU protein and D1 protein in

Brz-treated seedlings were the same as those in seedlings

seedlings that were not treated with Brz (Figure 10a,b). In the

wild-type, the levels of nuclear-encoded LHCP protein and

Rubisco SSU protein were also increased by Brz treatment

(Figure 10c,d). The effect of BPG2 deficiency on the level of

LHCP protein was much smaller than that on D1 and Rubisco

LSU.

DISCUSSION

BPG2 functions as a translational regulator of brassino-

steroid signaling

BRs and their biosynthesis inhibitor Brz can regulate not

only plant development but also chloroplast development.

The dark-grown BR-deficient mutant det2 and dark-grown

wild-type plants treated with Brz showed photomorpho-

genesis and expression of the photosynthetic genes rbcS

and CAB (Chory et al., 1991; Asami et al., 2000, 2001), and

increased accumulation of Rubisco LSU and SSU protein

(Nagata et al., 2000). Although the physiological relation-

ships between BR and chloroplast regulation are clear, the

molecular mechanism has not been revealed.

Here, we screened a Brz-insensitive pale green mutant,

bpg2, and found that the phenotype was caused by disrup-

tion of a novel chloroplast protein containing a putative zinc

finger motif and GTP-binding domains. Brz was shown to

induce greening of wild-type Arabidopsis, but the pale green

phenotype of the bpg2 mutant could not be recovered

by Brz. Brz increased endogenous chlorophyll levels in

wild-type Arabidopsis, but chlorophyll synthesis was not

increased in the bpg2 mutants (Figure 1e,f).

Sodium nitroprusside (SNP) is a nitric oxide donor that

has been shown to induce greening in wild-type Arabidopsis

(Flores-Pérez et al., 2008). When both wild-type Arabidopsis

and bpg2 mutants were treated with SNP under the same

conditions as for Brz treatment described in Figure 1, the

chlorophyll content of bpg2 mutants was increased (Fig-

ure S1). These results suggest that the Brz-insensitive pale

green phenotype of bpg2 specifically depends on BR

signaling. Furthermore, the abnormal chloroplast ultrastruc-

ture observed for bpg2-1 by electron microscopy (Figure 5j

and Figure 6), together with the reduced BPG2 gene

induction in response to Brz, suggest that the BPG2 protein

plays an important role in regulation of plastid differentia-

tion under BR signal transduction. The present paper shows

the effect of a chloroplast morphogenesis mutant on BR

signaling.

Although bpg2-1 showed semi-dwarf leaves and inflores-

cences, the shape was restored to wild-type by transforma-

tion with the wild-type BPG2 gene (Figure 3 and Table 1).

These results suggest that BPG2 could affect plant develop-

ment as a consequence of regulation of chloroplast devel-

opment and photosynthesis by BPG2 itself.

A working hypothesis for BPG2 function in chloroplast

regulation is shown in Figure S2. In bpg2 mutants, there was

no reduction in expression of psbA and rbcL (Figure 7a,b),

but accumulation of D1 protein encoded by the psbA gene

and Rubisco LSU protein translated from the rbcL gene was

decreased compared to the wild-type (Figure 9c,d,g,h). In

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Decreased accumulation of proteins from genes encoded on the chloroplast genome in bpg2.

Total protein was prepared from 4-day-old seedlings (a, c, e, g) and 3-week-old rosette leaves (b, d, f, h) of wild-type (WT), bpg2-1 and bpg2-2. (a, b) Gel stained with

Coomassie brilliant blue.

(c–h) Immunoblot analyses were performed using polyclonal antibodies against photosystem II D1 protein (c, d), LHCP protein (e, f) and Rubisco LSU and SSU (g, h).
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contrast to these chloroplast-encoded proteins, there was a

lower ratio of reduction for the nuclear-encoded protein

LHCP in bpg2 mutants relative to the wild-type (Figure 9e,f).

In the bpg2 mutant, we identified abnormal accumulations

of pre-16S rRNA and pre-23S rRNA, and abnormal fragmen-

tation of 23S rRNA compared to wild-type (Figure 8). This

fragmentation of 23S rRNA is also widespread in bacteria.

In many bacteria, rRNA splicing and fragmentation are

tightly related to quality control of rRNA during assembly of

the ribosomal subunits, and have been shown to be

important for cell viability (Cheng and Deutscher, 2003;

Evguenieva-Hackenberg, 2005). Bacterial pre-23S and pre-

16S rRNA are spliced after poly-cistronic transcription by the

endoribonuclease RNase III (Evguenieva-Hackenberg, 2005).

Post-transcriptional regulation of mRNA has also been

analyzed in detail for bacteria. Bacterial mRNA is generally

encoded without introns, and the full-length mRNA is not

regulated by splicing but is controlled by degradation with

exoribonuclease (Kennell, 2002). The post-transcriptional

regulation of bacterial mRNA and rRNA is considered to be

controlled by two different systems. As the chloroplast gene

expression system is considered to be similar to the

prokaryotic system, the abnormal levels of chloroplast

protein in bpg2 may be regulated by accumulation of

abnormal rRNA.

Finally we analyzed the effect of Brz on chloroplast protein

accumulation in the light-germinated bpg2 mutant. For the

wild-type, accumulation of chloroplast genome-encoded

Rubisco LSU protein and D1 protein clearly increased under

Brz treatment in the light (Figure 10). In contrast, Brz had

little effect on chloroplast protein accumulation in the light-

germinated bpg2 mutant (Figure 10). These results showed

that disruption of BPG2 function interferes with the stimu-

lation of chloroplast protein translation or accumulation by

Brz. Thus, BPG2 may regulate chloroplast protein translation

and/or accumulation according to the regulation of chloro-

plast rRNA maturation in BR signal transduction. Although

unspliced pre-16S and pre-23S rRNA could be clearly

detected in the bpg2 mutant, normally spliced 16S and 23S

rRNAs appeared to be the major products. Nonetheless, the

levels of D1 and RubisCo LSU proteins were greatly reduced

in bpg2 mutants. Enhanced inhibition of translation has also

been detected in an Arabidopsis mutant of RNR1, an

exoribonuclease for chloroplast rRNA, but the molecular

(a) (b)

(c) (d)

Figure 10. Accumulation of chloroplast proteins

was not increased by Brz in bpg2.

Total protein was prepared from wild-type (WT),

bpg2-1 and bpg2-2 germinated in the light for 3

days with 0 or 1 lM Brz. Immunoblot analyses

were performed using polyclonal antibodies

against photosystem II D1 protein (a), LHCP

protein (b) and Rubisco LSU (c) and SSU (d).

Error bar indicates SE.
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mechanism of the protein decreasing in the rnr1 mutant has

yet to be elucidated (Bollenbach et al., 2005). In bpg2,

abnormal ribosomes with unspliced rRNA could limit the

rate of translation, and repeated translational delay might

cause the greater reduction of protein accumulation that is

observed in these mutants.

ClpB3 and ClpC1 are thought to act as molecular chaper-

ones for chloroplast protein folding, and the mutants clpB3

and clpC1 showed a pale green phenotype and reduced

accumulation of photosynthetic protein complexes (Myouga

et al., 2006; Nakagawara et al., 2007). Under conditions

where levels of Rubisco LSU protein and D1 protein

increased in response to Brz treatment of the wild-type in

the light, no induction of these chloroplast proteins was

observed in clpB3 and clpC1 mutants (Figure S3a). The

results thus suggest that ClpB3 and ClpC1 might be new

members of the group of chloroplast protein regulatory

factors involved in BR signaling. Chloroplast protein regu-

lation by BR might be controlled not only by BPG2 but also

by a number of other players. Nevertheless, the lower

chloroplast protein accumulation in the bpg2 mutant (Fig-

ure 10) and the higher induction of BPG2 gene expression by

Brz in comparison with ClpB3 and ClpC1 (Figure S3b)

suggests that BPG2 plays an especially important role for

chloroplast protein regulation in BR signal transduction.

BPG2 as a novel regulator of chloroplast rRNA processing

The BPG2 gene encodes a putative 660 amino acid sequence

(Figure 2d). A further search showed that BPG2 homologues

are found in Gram-positive bacteria, such as Listeria mon-

ocytogenes, Lactococcus lactis and B. subtilis (Figure 2c).

The B. subtilis YqeH proteins have been recently character-

ized (Loh et al., 2007; Uicker et al., 2007), and found to pos-

sess a highly conserved zinc finger motif (CXXCXnCXXC)

that has previously been found in ribosomal proteins and

may participate in protein-RNA interaction (Anand et al.,

2006; Uicker et al., 2007). Arabidopsis BPG2 has a putative

zinc finger motif and GTP-binding domains that are similar

to those of YqeH (Figure 2d). We constructed a mutated

cDNA of BPG2 in which conserved amino acids of the zinc

finger motif and four GTP-binding domains were replaced

by with alanine, and transformed the bpg2-1 mutant with the

mutated BPG2 cDNA (Figure 4a). All six transformants

showed a pale green phenotype (Figure 4b–g,m,n), which

was not rescued by the mutated BPG2. These results sug-

gested that the zinc finger motif and GTP-binding domains

are necessary for BPG2 function, and possibly regulate

chloroplast biogenesis.

In this paper, we have shown the accumulation of pre-16S

rRNA and pre-23S rRNA in bpg2 mutants (Figure 8). In

Arabidopsis, factors related to chloroplast rRNA processing

have been isolated. An Arabidopsis mutant rnr1 lacking

exoribonuclease showed accumulation of pre-16S, pre-23S

and pre-4.5S rRNA (Kishine et al., 2004; Bollenbach et al.,

2005). The levels of 23S rRNA processed at hidden breaks of

1.2, 1.0, and 0.5 kb were decreased in the rnr1 mutant but

accumulated in bpg2 mutants at similar levels to the wild-

type (Figure 8b,c). Pre-16S rRNA and pre-23S–4.5S rRNA

di-cistronic processing intermediates accumulated in the

Arabidopsis dal1 mutant (Bisanz et al., 2003). In dal1,

expression of CAB and rbcL decreased in comparison to

the wild-type. Unlike dal1, expression of CAB and rbcL in

bpg2 mutants did not differ from that in the wild-type

(Figure 7a,b).

As described previously, B. subtilis YqeH is homologous

to BPG2, and YqeH-depleted cells accumulate pre-16S rRNA

(Loh et al., 2007; Uicker et al., 2007). GTP binding domains

G4-G1-G2-G3 are highly conserved between B. subtilis YqeH

and Arabidopsis BPG2 (Figure 2d). YqeH is a member of the

Era/Obg family, which is involved in assembly of ribosomal

subunits (Matsuo et al., 2007). In Arabidopsis, at least one

homolog to YqeH has been identified, under three gene

names (RIF/NOS/NOA), and the knock-out phenotype was

pale green leaves. From analysis of rif mutants, it appears

that RIF1 protein is involved in post-transcriptional

up-regulation of isoprenoid biosynthesis proteins in chlorop-

lasts (Flores-Pérez et al., 2008). NOS protein was found to

bind specifically to GTP and had GTP hydrolysis activity

(Moreau et al., 2008). A chimeric YqeH protein comprising

the transit peptide of AtNOA1 and bacterial GsYqeH from

Geobacillus complemented the pale green phenotype of the

Atnoa1 mutant. From these analyses, it is not possible to

establish whether RIF1, NOS1 and NOA1 are involved in

both regulation of the chloroplast ribosome as well as

regulation of chloroplast rRNA. However, our studies sug-

gest that the BPG2 protein has a novel function in regulating

chloroplastic 16S and 23S rRNA maturation, and these

results have not yet been analyzed by previous authors,

using plant YqeH homologous proteins. The relationship

between BPG2 function and ribosomal regulation promises

to be very interesting, and these analyses will clarify the

molecular mechanism of chloroplast protein synthesis in

the future.

A homologous gene of BPG2 and RIF/NOS/NOA,

At4g10620, has also been identified, and the GTP binding

domains G4-G1-G2-G3 are conserved in the three genes

(Figure 2c,d). Based on hydropathicity plot analysis,

N-terminal hydrophobic amino acid sequences in BPG2

and RIF/NOS/NOA were identified that were predicted to be

chloroplast transit peptides. By contrast, an N-terminal

sequence of the At4g10620 protein was predicted to be

hydrophilic, indicating that At4g10620 protein is not trans-

ported into the chloroplast. This suggests that, with respect

to functional homology, BPG2 might be closer to RIF/NOS/

NOA than to At4g10620.

BLAST searches with the BPG2 amino acid sequence

revealed that BPG2-homologous genes are widespread in

dicot and monocot plants, including Arabidopsis, rice,
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Medicago truncatula and grape (Figure 2c,d). BPG2 homo-

logs are also present in the green algae O. lucimarinus and

C. reinhardtii, and Gram-positive bacteria, such as L. mon-

ocytogenes, L. lactis and Bacillus subtilis (Figure 2c). These

results suggest that the BPG2-homologous gene family

might have been conserved during evolution, before sym-

biosis of ancestral green algae into higher plants. rRNA

fragmentation and processing has been found widely in

bacteria and extensively researched, although the enzymatic

machinery has not yet been elucidated. The evolutionary

conservation between BPG2 and the proteins of many plant

organelles and bacteria (Figure 2c,d) can be used to eluci-

date mechanisms of rRNA processing and translational

regulation.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis thaliana Columbia-0 (Col-0) was used as the wild-type.
For cotyledon analysis, plants were germinated and grown on half-
strength MS medium (Duchefa, http://www.duchefa.com) contain-
ing 1.5% sucrose and 0.9% phytoagar (Duchefa), with or without Brz.
Germinated plants were transferred to soil. Conditions in the
growth chamber were 16 h light (100 lE m)2 sec)1 white light)/8 h
dark at 22�C.

Measurement of chlorophylls a and b

Chlorophyll was extracted from 3-day-old seedlings grown in the
light (100 lE m)2 sec)1) under long days (16 h light/8 h dark). Plants
were homogenized in 80% v/v acetone. The chlorophyll content of
the centrifuged supernatants was determined at 645 and 663 nm.
Chlorophyll a and b content were determined as described previ-
ously by Arnon (1949):

Chlorophyll a ðlg=mg fresh weightÞ ¼ 12:7A663 � 2:59A645ð Þ
mg fresh weight

Chlorophyll b ðlg=mg fresh weightÞ ¼ 22:9A645 � 4:67A663ð Þ
mg fresh weight

TAIL-PCR

To identify the flanking genomic sequence of the T-DNA of pPCVI-
CEn4HPT, we performed thermal asymmetric interlaced PCR (TAIL-
PCR) as described previously (Liu et al., 1995). Genomic DNA was
extracted from 3-week-old Arabidopsis rosette leaves using nucleon
PHYTOpure PLANT DNA extraction (Amersham, http://www5.
amershambiosciences.com/). The T-DNA flanking sequence was
amplified using the T-DNA-specific primers LB150 (5¢-CAC-
GTCGAAATAAAGATTTCCG-3¢) for the TAIL1 reaction, LB100 (5¢-
CCTATAAATACGACGGATGC-3¢) for the TAIL2 reaction and LB50
(5¢-ATAATAACGCTGCGGACATCT-3¢) for the TAIL3 reaction, and
degenerate primers AD2 (5¢-NGTCGASWGANAWGAA-3¢) or AD5
(5¢-SSTGGSTANATWATWCT-3¢) for all three reactions (S = G or C,
W = A or T, N = A, G, C or T).

Generation of BPG2–GFP transgenic plants

The BPG2 cDNA was amplified from wild-type Col-0 cDNA by RT-
PCR using KOD-plus DNA polymerase (Toyobo, http://www.toyo-
bo.co.jp). The PCR product was cloned into the pENTR�/D-TOPO�

vector using the pENTR� directional TOPO� cloning kit (Invitrogen,
http://www.invitrogen.com/). Site-directed mutagenesis for BPG2
was performed as described previously (Higuchi et al., 1988), and
PCR products of mutated BPG2 genes were cloned into the pENTR�/
D-TOPO� vector. Using Gateway technology (Invitrogen), the
resulting pENTR-BPG2 and pENTR-mutated BPG2 vectors were
further cloned into the binary vector pGWB5 (Nakagawa et al.,
2007), which contains a CaMV 35S promoter. The generated con-
structs 35S::BPG2-GFP and 35S::mutated BPG2–GFP were trans-
formed into wild-type Col-0, bpg2-1 or bpg2-2 using the
Agrobacterium-mediated floral dip method. Transgenic plants were
screened on half-strength MS agar plates containing 25 lg ml)1

kanamycin.
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bpg2 mutant were increased by the nitrate oxide donor SNP.
Figure S2. Possible function of the BPG2 protein in wild-type and the
bpg2 mutant.
Figure S3. Accumulation of chloroplast proteins was not increased
by Brz in clp mutants, but BPG2 mRNA was highly induced by Brz in
comparison with CLP mRNAs.
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