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Dalal K. Bubshait, MD,11 Alberto Burlina, MD,12 John Christodoulou, MD,13,14,15

Wendy K. Chung, MD,16 Roberto Colombo, MD,17,18 Niklas Darin, MD,19

Peter Freisinger, MD,20 Maria Teresa Garcia Silva, MD,21,22

Stephanie Grunewald, MD, PhD,23 Tobias B. Haack, MD,4,24

Peter M. van Hasselt, MD, PhD,25 Omar Hikmat, MD,26,27

Friederike H€orster, MD,28 Pirjo Isohanni, MD,29,30 Khushnooda Ramzan, PhD,5,6

Reka Kovacs-Nagy, MD, PhD,4 Zita Krumina, MD, PhD,31

Elena Martin-Hernandez, MD,21,22 Johannes A. Mayr, PhD,32

Patricia McClean, MD,33 Linda De Meirleir, MD, PhD,34 Karin Naess, MD, PhD,35

Lock H. Ngu, MD,36 Magdalena Pajdowska, MD,37 Shamima Rahman, MA, PhD,38

Gillian Riordan, FCP,39 Lisa Riley, MD,14,15 Benjamin Roeben, MD,40,41

Frank Rutsch, MD,42 Rene Santer, MD,43 Manuel Schiff, MD, PhD,44

Martine Seders, PhD,45 Silvia Sequeira, MD,46 Wolfgang Sperl, MD, PhD,32

Christian Staufner, MD,28 Matthis Synofzik, MD,40,41 Robert W. Taylor, PhD,47

Joanna Trubicka, PhD,48 Konstantinos Tsiakas, MD,43 Ozlem Unal, MD,49

Evangeline Wassmer, MD,50 Yehani Wedatilake, MD,38 Toni Wolff, MD,51

Holger Prokisch, PhD,4,52 Eva Morava, MD, PhD,53 Ewa Pronicka, MD,54

Ron A. Wevers, PhD,1 Arjan P. de Brouwer, PhD,45,55 and

Saskia B. Wortmann, MD, PhD4,32,52

View this article online at wileyonlinelibrary.com. DOI: 10.1002/ana.25110

Received Jun 13, 2017, and in revised form Nov 13, 2017. Accepted for publication Nov 26, 2017.

Address correspondence to Dr Wortmann, Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Mullner

Hauptsrasse 38, 5020 Salzburg, Austria. E-mail: s.wortmann-hagemann@salk.at

From the 1Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands;
2Department of Audiology and Phoniatrics, Children’s Memorial Health Institute, Warsaw, Poland; 3Division of Metabolic Disease, Ege University

Medical Faculty, Department of Pediatrics, Izmir, Turkey; 4Institute of Human Genetics, Technische Universit€atM€unchen, Munich, Germany; 5Department

of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; 6Department of Anatomy and Cell Biology, College of

Medicine, Alfaisal University, Riyadh, Saudi Arabia; 7Western Sydney Genetics Program, Children’s Hospital at Westmead, Sydney, New South Wales,

Australia; 8Discipline of Genetic Medicine & Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia; 9Department of

Pediatrics, University Hospital Center, Zagreb, Croatia; 10School of Medicine, University of Zagreb, Zagreb, Croatia; 11Department of Pediatrics, College

of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; 12Division of Inherited Metabolic Diseases, Department of Pediatrics,

1004 VC 2017 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/


Objective: 3-Methylglutaconic aciduria, dystonia–deafness, hepatopathy, encephalopathy, Leigh-like syndrome
(MEGDHEL) syndrome is caused by biallelic variants in SERAC1.
Methods: This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiologi-
cal, and genetic findings are reported.
Results: Sixty-seven individuals (39 previously unreported) from 59 families were included (age range 5 5 days–33.4
years, median age 5 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not
been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a
strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia
were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed
by progressive spasticity (82%, median onset 5 15 months) and dystonia (82%, 18 months). The majority of affected
individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and
nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homoge-
nous, with bilateral basal ganglia involvement (98%); the characteristic “putaminal eye” was seen in 53%. The urinary
marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spas-
ticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve
communication skills.
Interpretation: MEGDHEL syndrome is a progressive deafness–dystonia syndrome with frequent and reversible neo-
natal liver involvement and a strikingly homogenous course of disease.

ANN NEUROL 2017;82:1004–1015

The first clinical description of 4 individuals with

MEGDEL (3-methylglutaconic aciduria, dystonia–

deafness, encephalopathy, Leigh-like) syndrome was pub-

lished in 2006.1 In 2012, biallelic variants in SERAC1

(serine active site containing 1) were shown to cause this

autosomal-recessive deafness–dystonia disorder.2 Soon

afterward, with the description of liver involvement as an

additional clinical feature, hepatopathy was incorporated

into the acronym (MEGDHEL; Mendelian Inheritance

in Man [MIM] #614739).3

SERAC1 encodes a protein with a serine–lipase domain,

which is a member of the PGAP-like protein domain family.

SERAC1 is localized at the mitochondria-associated mem-

branes, the contact sites between endoplasmic reticulum and

the mitochondrial interface, which are crucial for phospho-

lipid exchange.4 The enzyme is involved in the remodeling of

the phospholipid phosphatidylglycerol, the precursor of both

cardiolipin, essential for proper mitochondrial function, and

bis(monoacylglycerol)phosphate, essential for intracellular

cholesterol trafficking, respectively.2
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SERAC1 deficiency is one of the signature disor-

ders of an emerging and rapidly growing new class of

disorders affecting the biosynthesis and remodeling of

complex lipids.5,6 So far, 2 further genetic syndromes

have been linked to the cardiolipin biosynthetic pathway:

AGK deficiency (Sengers syndrome, consisting of 3-

methylglutaconic aciduria [3-MGA-uria], cardiomyopa-

thy, and cataracts, MIM #212350) and TAZ deficiency

(Barth syndrome, consisting of 3-MGA-uria, cardiomy-

opathy, and neutropenia, MIM #302060).

Here, we describe the results of a detailed system-

atic, multicenter study of the genetic, biochemical, radio-

logical, and clinical findings of a cohort of 67 individuals

(including 39 previously unreported cases) with MEGD-

HEL syndrome. We present 20 novel variants in SERAC1

and a complete phenotypic description, thereby facilitat-

ing diagnosis, and providing a proper prognosis for

patients with this disorder.

Patients and Methods

Informed Consent
All procedures followed were in accordance with the ethical

standards of the Helsinki Declaration of 1975 as revised in

2000.7

Cohort and Phenotypic Evaluation
All individuals in this study had rare biallelic variants in

SERAC1 and typical phenotypic findings leading to the diagno-

sis of MEGDHEL syndrome (detailed in the Results section).

Their respective physicians completed a questionnaire concern-

ing the course of disease for each organ system, together with

metabolic, radiological, and genetic findings. GraphPad (La

Jolla, CA) Prism7 was used for Kaplan–Meier survival analysis.

Biochemical Investigations in Tissues and
Specimens of Affected Individuals
Urinary organic acid analysis; serum/plasma amino acid analy-

sis; histological and immunohistochemical evaluation, measure-

ment of the oxidative phosphorylation system (OXPHOS), and

quantitation of mtDNA in muscle, liver, or cultured fibroblasts;

and filipin staining in cultured fibroblasts were performed using

standard methods as described before.2,8

Identification of SERAC1 Variants
Variants were found either by Sanger sequencing, exome

sequencing as previously described,2,9–15 or genome sequenc-

ing.16 All variants found in individuals, and carrier status of

parents, were confirmed by Sanger sequencing (details available

upon request). The deletion of exon 4 to exon 8 in P18 was

identified by genomic quantitative polymerase chain reaction

(qPCR) as described previously.17 qPCR primers of exon 3

through exon 13 of SERAC1 are available upon request.

Results

Genetic Findings and Incidence of MEGDHEL
Syndrome
A total of 41 different SERAC1 (NM_032861.3) variants

were identified in the 67 individuals described, including

20 that have not been reported before (Fig 1, Supplemen-

tary Table 1). Fifteen individuals had compound heterozy-

gous variants and 52 a homozygous variant. Variants were

categorized as frameshift (n 5 13), nonsense (n 5 11), mis-

sense (n 5 8), canonical splice site (n 5 3), splice site

(n 5 3), frameshift/canonical splice site (n 5 1), extension

(n 5 1), and in-frame deletion variants (n 5 1). These var-

iants were predicted to result either in nonsense-mediated

mRNA decay (n 5 29), a truncated protein (n 5 2),

impaired lipase function (n 5 5), or extension of SERAC1

of 32 amino-acid residues (n 5 1). For 4 missense variants,

the effect on protein level is uncertain, as they are not

located in the lipase domain (see Fig 1). However, they

affected amino acids that are conserved down to zebrafish,

indicating that they are essential for proper protein

function.

Four variants were found multiple times (see Fig

1). The c.1822_1828 1 10delinsACCAACAGG, p.(?)

was detected in 14 European families, indicating that it

could be a founder variant. Likewise, the c.1493G>C;

p.(Ser498Thr) was found in 4 other European families;

for 2 of them, common ancestry has been shown previ-

ously via haplogroup analysis.2 The c.1403 1 1G>C;

p.(Arg446*) was detected in 5 families (and 1 additional

from the literature)18 The c.202C>T; p.(Arg68*) was

documented in 3 families from the greater Mediterranean

area, and c.442C>T; p.(Arg148*) was seen in 6 families

from Turkey, Saudi Arabia, and China, which may reflect

distribution of the variant along the Silk Route.

Based on the prevalence of deleterious SERAC1

alleles in the normal population (ExAC database; Lek

et al19, we estimate that approximately 27 children with

MEGDHEL will be born each year worldwide (Supple-

mentary Table 2).

General Characteristics of Affected Individuals
and Survival
A total of 67 individuals from 59 families were included,

of whom 28 individuals have been published previously

(P1–15,2 P35,10 P42,11 P49,20 P50,12 P51–52,13 P58,14

P60–64,21 and P66.15

Most of the individuals reported here are of Euro-

pean ancestry (see Supplementary Table 1, n 5 41),

although we have also ascertained individuals from Africa

(n 5 4), Asia (n 5 12), the Middle East (n 5 12), and

Australia (n 5 1), showing that MEGDHEL syndrome is

a panethnic condition.

ANNALS of Neurology
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In 38 of 59 (64%) families, consanguinity was

reported. The male to female ratio was 1:1.3 and the

median age of individuals (as of September 2016) in our

cohort was 9 years (range 5 5 days–33.4 years).

The median age at diagnosis (the age at the date of

the genetic report was used for calculations; if individuals

were deceased, the age at death was used for calculation)

was 7.2 years. Thirty-two individuals were diagnosed

with targeted SERAC1 Sanger sequencing (median age at

diagnosis 5 5.7 years), 26 via next generation sequencing

techniques (7.2 years), and 9 via family screening by

Sanger sequencing (3.7 years). Seven individuals were

diagnosed at <1.5 years, of whom 2 had liver failure as

the dominating finding, 2 had the typical neurological

signs and symptoms, 1 was based on the magnetic reso-

nance imaging (MRI), and 2 were diagnosed due to vari-

ous reasons and a positive family history.

Sixteen individuals passed away at a median age of

9 years (range 5 5 days–16 years; for Kaplan–Meier sur-

vival curves, see Fig 2). The main causes of death were

respiratory infections (10/16 5 63%) and multiorgan fail-

ure (1 child), and were unknown in 5 cases.

Major Clinical Features

PREGNANCY AND DELIVERY. Problems during preg-

nancy (data were available for 55 pregnancies) were

uncommon; 8 pregnancies (8/55, 15%) were reported as

having been complicated by intrauterine growth retarda-

tion, 1 with oligohydramnios and none with polyhy-

dramnios; decreased movements were described in 1

fetus. Forty-six individuals were delivered by a normal

vaginal delivery (84%) and 9 by Caesarean section (16%;

no details about the indication were available).

NEONATAL COURSE. Forty-seven individuals (47/

67 5 70%) presented in the neonatal period and required

inpatient observation or treatment. Twenty-two of 45

(49%) had suspected neonatal sepsis, and 30/62 (48%)

had severe liver dysfunction. Twenty-nine individuals had

recurrent hypoglycemia (glucose values< 2mmol/l in 29/

65 5 44%), 9/53 (17%) were ventilated due to respira-

tory insufficiency, and 31/67 (46%) were reported to

have other neonatal adaptation problems. Two individu-

als died in the neonatal period, 1 due to respiratory

FIGURE 1: The upper panel shows a schematic representation of the human SERAC1 protein with the positions of all variants
identified. The black box represents the lipase/esterase domain. The lower panel shows the Cross-species alignment. Clustal
Omega34 targeted the protein sequences directly surrounding the 4 missense variants, p.(Asp224Gly), p.(Gly339Arg),
p.(Val556Asp), and p.(Ser608Thr). The changes are highlighted by the black boxes; all conserved down to the zebrafish. Pro-
tein accession numbers used for alignment are given before the sequences and include the specific species. The position of
the last amino acid residue in each row is given right after the respective sequences.
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insufficiency at 5 days of age (P7) and 1 due to multior-

gan failure at 6 days of age (P31).

Neurological Features, Developmental
Milestones, Intellectual Abilities, and Daily
Living
Neurological features followed a specific pattern in

almost all individuals. The first signs were delayed motor

development (57/66 5 86%) and muscular hypotonia

(59/65 5 90%), recognized at a median age of 6 months.

Twenty-eight of 59 individuals (47%) presented with

axial hypotonia, 17 with generalized hypotonia (17/

59 5 29%); for 14, no details were available. Previously

obtained skills were lost, starting from a median of

12 months of age, in the majority of individuals (50/

67 5 75%). Progressive spasticity of the limbs developed

at a median age of 15 months (53/65 5 82%, range of

onset 5 1–48 months), and dystonia at a median age of

18 months (53/65 5 82%, range of onset 5 1–84

months). Dystonia mainly involved the upper extremities

and to a lesser extent the lower extremities. Typically,

individuals presented oropharyngeal dyskinesia with

repetitive protrusion of the tongue, dysphagia, and exces-

sive drooling (34/59 [58%]). For clinical photographs,

see Figure 2.

Seventy-eight percent (26/38) of the individuals

never learned to walk. Of the 12 individuals who walked

FIGURE 2: (A) Kaplan–Maier Survival plot showing overall survival for 67 individuals. (A–E) clinical photos of P28 at the age (B)
18 months, (C) 3 years, (D) 5 years, and (E) 8 years. Note the progressive spasticity and the dystonic posture of the limbs. The
patients’ parents gave written permission for showing the face of their child. (F) T2-weighted magnetic resonance image of the
same individual at the age of 5 years showing bilateral ganglia involvement sparing the central putamen (“putaminal eye”).
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independently, 3 lost this skill within 1 year, and 2 had

preserved ambulation up to the age of 6 and 7 years,

respectively; 5 individuals from 1 family (Family 56,

P60–64) and another female (P56) have preserved ambu-

lation into their 20s and up to 8 years, respectively. With

disease progression, 39% (19/49) of individuals devel-

oped scoliosis. Epilepsy was reported in 23/66 individuals

(35%). All 67 individuals had intellectual disability, vary-

ing in severity (severe, 37/51 5 73%; moderate, 8/

51 5 16%; mild, 6/51 5 12%; data on severity were

lacking for 16 individuals). Nearly all individuals (62/

67 5 93%) were completely dependent on others for all

activities of daily living.

It is important to note that 1 family of 5 affected

individuals (Family 56, P60–64, details will be reported

separately21 and 1 female individual (P67) had a milder

course of disease. In Family 56, the presentation was

spasticity and loss of skills starting at the age of 5 years

in 2 siblings, whereas spasticity did not start before ado-

lescence in 2 other siblings and is still absent in the fifth

sibling at the current age of 11 years. Only 2 of the sib-

lings showed dystonia. They all learned to walk; the old-

est lost this ability at the age of 12 years, and the other

individuals are still ambulatory at ages between 12 and

24 years. They all have a mild intellectual disability, are

able to communicate with words, with the exception of

the oldest individual, who has lost this ability. They

never displayed hepatic dysfunction and have normal

hearing.

The female (P67) presented with delayed develop-

ment, general muscular hypotonia, and failure to thrive

at the age of 3 years. She is currently aged 8 years, is

able to walk independently, has a mild intellectual dis-

ability, but is in a mainstream school with additional

support. She never had any significant hepatic dysfunc-

tion, has normal hearing, and does not exhibit spasticity

or a movement disorder.

Neuroradiological Findings
Individuals with MEGDHEL syndrome show a character-

istic MRI pattern with 5 distinctive disease stages affecting

the basal ganglia and especially the putamen; these data

have been reported in detail separately.22 First, in stage 1,

T2 signal changes of the pallidum are seen. Stage 2 is

characterized by swelling of the putamen and caudate

nucleus. The dorsal putamen contains an “eye” that

showed no signal alteration and so seemed to be spared

during this stage of the disease. From stage 3 onward, the

“putaminal eye” (see Fig 2) gradually decreases, mirroring

progressive basal ganglia dysfunction. Finally, stage 4 is

characterized by shrunken basal ganglia, which further

atrophy in stage 5. Brain MRI studies were available for

55/67 individuals. In all individuals, alterations of the

basal ganglia at different stages were observed. In 29 of 55

individuals, the pathognomic putaminal “eye” was

reported, which is visible in stages 2 and 3.

Hearing Impairment and Speech Development
Forty of 52 individuals passed the neonatal hearing

screen. Forty-eight of 61 individuals (79%) were diag-

nosed with sensorineural hearing impairment; this was

diagnosed in the neonatal period in 11/48 (23%), before

the age of 1 year in 7/48 (15%), and later in 25/48

(52%). In 56% of individuals (34/61), speech was

completely absent. Four children (7%) could use sounds

to communicate (dis)comfort; an additional 5 had lost

this skill (8%). Eleven of the 61 individuals (18%) were

able to use words for a limited period of time

(maximum 5 1.5 years) before losing this skill. Seven

individuals (11%) were still able to communicate with

words at the ages of 8 years (P48, P67) and 12 to 24

years (Family 56, P60–64), respectively.

Thirty-two children were fitted with hearing aids.

Appropriate tolerance of reinforcement/sounds was seen

in all cases, with improvement of formal hearing test

results. The behavioral reactions during fitting included

smiling, articulation of sounds, or quieting. However, 10

individuals did not continue to tolerate the hearing aids

and showed agitated and frightened behavior. Another 4

individuals underwent cochlear implantation, which was

also not tolerated. None of these 36 individuals showed

improvement in speech development following auditory

augmentation, but the parents of 4 children reported

improved interaction with the environment. The mecha-

nism of hearing impairment in MEGDHEL is probably

sensorineural (cochlear), but the coexistence of a neural

or central component is likely. The limited data on the

age of hearing loss appearance and progression mean that

it is currently impossible to draw firm conclusions about

the pathomechanism. A simple explanation that this

reflects high energy demand of sensory tissues is inade-

quate, as hearing loss occurs selectively only in some

mitochondrial disorders and is absent in others with

comparable course and severity.

An even more complex clinical finding is the near

complete lack of speech development in most MEGD-

HEL cases. Although the hearing loss seems to be the

major cause of loss of verbal abilities, a multifactorial

contribution of intellectual impairment, oropharyngeal

dyskinesia, extrapyramidal movements of the tongue,

dysphagia, and drooling is almost certain. Furthermore,

the characteristic basal ganglia involvement could be

important. In the procedural/declarative model of
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language learning, an important role for the basal ganglia

in the assembly of phonemes into words is suggested.23

Visual Impairment
A total of 26 individuals of 62 (42%) were reported to

have impaired vision. Four of 64 (6%) individuals had

retinal pigmentary changes. Fourteen of 55 individuals

(25%) had signs of optic atrophy documented on fundo-

scopy or MRI, which is the common morphological end-

point of any disease-causing axonal degeneration. The

underlying pathophysiology is speculative but in line

with the neuronal degeneration of basal ganglia. A possi-

ble explanation is mitochondrial dysfunction in the

broadest sense impairing axonal transport and leading to

axonal degeneration.24

Liver Involvement
Severe neonatal liver dysfunction was reported in 30/62

(48%) individuals. Nine of these 30 (30%) individuals

fulfilled the criteria of neonatal liver failure (elevated

aspartate aminotransferase (ASAT), alanine aminotrans-

ferase (ALAT), and/or conjugated bilirubin, disturbed

coagulation with international normalized ratio> 2, and

encephalopathy). Seven individuals did not meet the full

definition of liver failure but presented hyperammonemia

(maximum level 5 600 mmol/l, reference range< 100

mmol/l), and were treated with protein restriction and

ammonia scavengers, and 1 individual additionally

underwent hemofiltration. Two individuals were given

galactose-free formulas in the neonatal period due to the

combination of jaundice, neurological features, and a

suspicion of sepsis, raising a possible diagnosis of

galactosemia.

Beyond the neonatal period, no individual exhib-

ited features of liver failure; however, signs of hepatic

dysfunction were frequently reported. During the first

year of life, 24/50 (48%) individuals were reported with

transient cholestasis and jaundice. Hepatomegaly at any

age during their lifetime was reported in 17/64 (27%)

individuals, and disturbed coagulation tests were docu-

mented in 18 of 55 individuals (33%), but only 1 (1/55)

had subsequent bleeding problems.

During the course of a life ASAT/ALAT were tran-

siently increased on multiple occasions in 42/55 (76%)

individuals (range 5 1.5–60-fold elevated). The duration

of elevation lasted for up to 9 months and was most

prominent during the first year of life.

A liver biopsy was obtained from 11 individuals

and showed nonspecific histopathological changes (fibro-

sis n 5 8, cholestasis n 5 5, steatosis n 5 6, and ductope-

nia n 5 1) in 8/11 cases (73%). The OXPHOS system

was evaluated in 6 liver biopsies, and 3 of these samples

showed deficiencies of different OXPHOS enzymes.

Mild mtDNA depletion was measured in 3 of 4 liver

biopsies compared to age-matched controls.

Renal, Cardiac, and Other Organ Involvement
Eight individuals showed impaired tubular function (8/

66 5 12%; eg, P3510) mostly transient and in the neona-

tal period. One individual had hypophosphatemic rickets,

possibly due to incapacity of the renal tubules to reab-

sorb phosphate (further evaluation was not performed).

In 5 of 67 individuals (7%), cardiac abnormalities

were reported. These were congenital heart defects (mild

pulmonary stenosis, patent foramen ovale, and a small

atrium septum defect were reported in 1 individual each)

without hemodynamic consequences. In 2 individuals

suffering multiorgan failure during an infection, left ven-

tricular hypertrophy with good function (n 5 1) and par-

oxysmal bradycardia (n 5 1) were seen.

Many individuals suffered recurrent respiratory

infections (28/66 5 42%), which were also the main

cause of death. No immunological problems have been

reported in our cohort. We consider it likely that the

combination of scoliosis, gastroesophageal reflux, insuffi-

cient clearing of the airway with pharyngeal pooling of

secretions, and subsequent microaspirations causes the

frequent respiratory infections.

Failure to thrive and feeding problems were a com-

mon and concomitant problem (52/66 individu-

als 5 79%). Thirty-seven of 58 individuals (64%) were

given tube feeding.

Disease Management
More detailed data on drug treatment were available for

22 individuals. Oral baclofen was given to 15 individu-

als. It was reported as having a positive effect in 11 indi-

viduals, whereas in 2 no change was observed, and in

another 2, clinical deterioration of spasticity was seen.

Four individuals received oral L-dopa, with improvement

of the movement disorder in 1 case, no clinical improve-

ment in 2 individuals, and worsening of dystonia in the

fourth case.

Many individuals were reported to be on proton

pump inhibitors (indication was gastroesophageal reflux)

or macrogols (constipation), although detailed data were

not available. Cessation of seizures was reported follow-

ing antiepileptic drugs in 10 individuals; the other indi-

viduals with epilepsy were given only rescue medicines

such as midazolam, which was well tolerated. Four indi-

viduals were reported to take melatonin for sleeping

problems with good effect.

“Multivitamin cocktails” containing for example

coenzyme Q10, riboflavin, and biotin, either prescribed
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by their physician or as over-the-counter drugs in differ-

ent combinations and with different doses, were taken by

many individuals. Reliable data were available for only 5

individuals, for whom none of the caretakers or physi-

cians reported any discernible clinical difference.

Treatment of drooling in MEGDHEL syndrome

has been evaluated separately.25 In addition to the

described successful surgical correction, P28 and P65

were given atropine 0.5% eye drops orally (1 drop every

6 hours), which reduced drooling to a normal level with-

out any side effects.

Metabolic Findings in Blood and Urine
The most striking metabolic finding in MEGDHEL syn-

drome was the increased urinary excretion of 3-MGA.

Sixty-one of 62 (98%) individuals had 3-MGA-uria (for

47 individuals, quantitative values of several investigations

were available; median lowest values 5 63mmol/mol creat-

inine, median highest values 5 141mmol/mol creatinine,

reference range< 20mmol/mol creatinine). Remarkably, in

1 individual no 3-MGA-uria was detected (P41). In all

patients for whom multiple 3-MGA measurements were

available, these fluctuated up to a 3-fold increase. Serum

TABLE 1. Most Frequent Clinical, Radiological, and Metabolic Findings in Individuals with MEGDHEL Syndrome

Finding Cohort,

n 5 67

Literature,

n 5 7

Total,

n 5 74

Median Age

of Onset, yra

Ethnicity b c

Any neonatal problem 47/67 (70%) 7/7 (100%) 54/74 (73%)

Neonatal hypoglycemia 29/65 (44%) 5/5 (100%) 34/70 (49%)

Severe neonatal liver dysfunction 30/62 (48%) 5/5 (100%) 35/67 (52%)

Neonatal liver failure 15/65 (23%) 7/7 (100%) 22/72 (30%)

Muscular hypotonia 59/65 (91%) 5/5 (100%) 64/70 (91%) 6 mo

Loss of skills 50/67 (75%) n/a 50/67 (75%) 12 mo

Progressive spasticity 53/65 (82%) 4/5 (80%) 57/70 (81%) 15 mo

Dystonia 53/65 (82%) 4/5 (80%) 57/70 (81%) 18 mo

Oropharyngeal dyskinesia,

protrusion of the tongue

34/59 (58%) n/a 34/59 (58%)

Never learning to walk 26/38 (68%) n/a 26/38 (68%)

Sensorineural hearing loss 48/61 (79%) 5/5 (100%) 53/66 (80%)

Never learning to speak 34/59 (58%) n/a 34/59 (58%)

Moderate to severe intellectual disability 45/51 (88%) 1/1 (100%) 46/52 (88%)

Epilepsy 23/66 (35%) 4/6 (67%) 27/72 (38%)

MRI: basal ganglia involvement 55/56 (98%) 5/5 (100%) 60/61 (98%)

Optic atrophy 14/55 (25%) 0/1 (0%) 14/56 (25%)

3-methylglutaconic aciduria 61/62 (98%) 6/6 (100%) 67/68 (99%)

Lactic acidosis 51/61 (84%) 6/6 (100%) 57/67 (85%)

Positive filipin staining in fibroblasts 6/10 (60%) 2/2 (100%) 8/12 (67%)

aIn our cohort.
bEurope (n 5 41): Turkey (n 5 17); Poland (n 5 6); Sweden (n 5 4); Finland, Spain (n 5 2); Latvia, Ukraine, Rumania, Italy, Croatia, Portugal, the

Netherlands, Belgium, Germany, (1=4 German, 1=4 Curacao, 1=2 Polish; n 5 1). Africa (n 5 4): Somalia (n 5 2), South Africa, French African country

(no details available; n 5 1). Asia (n 5 9): Pakistan (n 5 3); India (n 5 2); Malaysia (n 5 2); Afghanistan, Bangladesh, China (n 5 1). Middle East

(n 5 12): Saudi Arabia (n 5 7); Iraq (n 5 5). Australia (n 5 1).
cArab Muslim (n 5 2), Druze (n 5 2), Palestine (n 5 1), Pakistan (n 5 2).

MEGDEL 5 3-methylglutaconic aciduria, dystonia–deafness, encephalopathy, Leigh-like syndrome; MRI 5 magnetic resonance imaging; n/a 5 not

available.
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lactate levels were increased in 51 of 61 (84%) individuals;

the median of the respective maximum values was

5mmol/l (range 5 1–53.3, normal value< 2mmol/l).

Evaluation of Tissues (Muscle, Liver, Cultured
Fibroblasts)
Histological and immunohistochemical evaluation

revealed nonspecific alterations (eg, fiber size

disproportion, mild accumulation of lipids or glycogen)

in 24/37 (65%) available muscle biopsies. Eleven of 20

(55%) muscle samples showed abnormalities by electron

microscopy; these were also nonspecific changes, includ-

ing abnormally shaped or damaged mitochondria, tubu-

lar aggregations11 in the subsarcolemmal regions, fatty

vacuoles, and oil droplets. Filipin staining of fibroblasts

was abnormal in 6 of 10 (60%) individuals.

TABLE 2. The Differential Diagnoses of MEGDEL Syndrome Based on Key Features

Key Features Diagnoses

(Reversible, neonatal) liver failure,

lactic acidosis

Mitochondrial DNA depletion syndromes (MPV17 [MIM #256810],

DGUOK [MIM #251880], TFAM [MIM #617156], TWNK [MIM

#271245], POLG [MIM #203700], AR)

Transient infantile liver failure due to variants in TRMU (MIM #613070,

AR; caveat: often presents only in 2nd/3rd months of life)

Niemann–Pick disease type C (NPC1 (MIM #257220, AR; caveat: no

lactic acidosis)

Isolated, significantly (>40mmol/mol

creatinine, reference< 20) and repetitively

elevated urinary 3-methylglutaconic acid

without elevation of 3-hydroxyisovaleric acid

TAZ deficiency (Barth syndrome, TAZ, MIM #302060, XLR): (cardio)-

myopathy, neutropenia, growth failure, DD

OPA3 deficiency (Costeff syndrome, OPA3, MIM #258501, AR): optic

atrophy, extrapyramidal symptoms (ataxia), DD

DNAJC19 deficiency (DCMA syndrome, DNAJC19, MIM #610198,

AR): dilated cardiomyopathy, ataxia, growth failure, endocrinological

features, ID/DD27

TMEM70 deficiency (TMEM70, MIM #614052, AR): neonatal hyper-

ammonemia, (cardio)myopathy, metabolic crises, ID/DD

CLPB deficiency (CLPB, MIM #616271, AR): cataracts, neutropenia,

variable neurological course28

AGK deficiency (Sengers syndrome, AGK, MIM #212350, AR):

cardiomyopathy, cataracts; isolated cataracts

HTRA2 deficiency (HTRA2, AR): neonatal encephalopathy, neutropenia,

muscular hypo- and hypertonia, seizures, ID/DD29,30

TIMM50 deficiency (TIMM50, AR): intractable seizures, ID/DD31

Deafness–dystonia SUCLA2 deficiency (SUCLA2, MIM #612073, AR), marker: mildly

increased methylmalonate combined with elevated carnitine esters

(C4DC) in both plasma and urine

Mohr–Tranebjærg syndrome (TIMM8A, MIM #241080, XLR)

Woodhouse–Sakati syndrome (DCAF17, MIM #241080, AR)

Deafness, dystonia and cerebral hypomyelination (BCAP31, MIM

#300398, XLR)

AR 5 autosomal recessive; DCMA 5 dilated cardiomyopathy with ataxia; DD 5 developmental delay; ID 5 intellectual disability; MEGDEL 5 3-

methylglutaconic aciduria, dystonia–deafness, encephalopathy, Leigh-like syndrome; MIM 5 Mendelian Inheritance in Man; XLR 5 X-linked

recessive.
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In 14/32 (44%) muscle biopsies, a deficiency of 1 or

more of OXPHOS enzymes was observed. OXPHOS

complex deficiencies were also found in 8/22 (36%) indi-

viduals’ fibroblast cell lines and in 3 of 6 liver biopsies.

No specific pattern of deficiencies was observed. Addition-

ally, mild mtDNA depletion compared to age-matched

controls was reported in 3 of 4 liver biopsies. As the

underlying protein defect is not thought to influence

mtDNA translation, this might well be a secondary effect.

Discussion

We describe the results of a systematic, multicenter study

on the genetic, clinical, neuroradiological, metabolic, and

biochemical findings of a cohort of 67 individuals with

MEGDHEL syndrome. Additionally, 7 individuals—who

were not included in this study—have been reported in

the literature with a comparable course of disease (Table

1, Supplementary Table 3).3,18,26

We report 20 new sequence variants, which,

together with the already known sequence variants, make

a total of 44 different known SERAC1 sequence variants.

The sequence variants are located throughout the whole

gene, with no hotspots. There are more loss-of-function

(stop, frameshift, and splice site) variants than missense

variants, with a respective ratio of 30:8, suggesting that

most missense variants are nondeleterious. This could

consequently suggest that milder clinical phenotypes are

currently underdiagnosed. The missense sequence variants

that we have identified inside and outside the highly con-

served lipase domain are all conserved down to the zebra-

fish, indicating that they are essential for SERAC1

function, thus supporting causality.

We here report 1 family21 and—for the first

time—1 female and with a significantly milder course of

disease than known before. The mild phenotype in the

family might be related to the nature of the respective

SERAC1 sequence variant, a noncanonical splice site

change, c.91 1 6T>C, for which aberrant splicing was

proven.21 The reason for the mild course in the female

cannot be explained on genetic grounds.

MEGDHEL syndrome is best described as a pro-

gressive deafness–dystonia syndrome with frequent liver

involvement. Despite the severity of neurological impair-

ment, most affected individuals survive into adulthood.

The clinical phenotype of the 67 individuals reported

here and the 7 reported in the literature is strikingly

TABLE 3. Overview of Disorders of the Biosynthesis and Remodeling of Phospholipids with Central Nervous

System Involvement

Predominant Clinical Finding Disorders (gene in which mutations are found)

Hereditary spastic paraparesis Calcium-independent phospholipase A2c (PLA2G6), fatty acid elongase ELOVL4

(ELOVL4), cytochrome P450 hydroxylase (CYP2U1), GPI-anchor synthesis pathway

(PGAP1), phospholipase A1 (DDHD2), arylsulfatase family member I (ARSI), phos-

pholipase A1 (DDHD1), fatty acid-2 hydroxylase (FA2H), neuropathy target ester-

ase (PNPLA6), nonlysosomal glucosidase 2 (GBA2), GM2 synthase deficiency

(B46ALNT1), serine active site containing 1 (SERAC1),21 ethanolaminephospho-

transferase 1 (EPT1)30

NBIA Calcium-independent phospholipase A2c (PLA2G6), pantothenate kinase 2

(PANK2), fatty acid-2 hydroxylase (FA2H), CoA synthase deficiency (COASY),

phospholipase A1 (DDHD1)31

Ataxia Neuropathy target esterase (PNPLA6), coenzyme Q10 deficiency (COQ8-ADCK3)

Movement disorders Serine active site containing 1 (SERAC1), coenzyme Q deficiency (COQ1-PDSS2),

lactosylceramide a-2,3 sialyltransferase (GM3 synthase; ST3GAL5), calcium-

independent phospholipase A2c (PLA2G6)

Complex or syndromic

developmental delay/intellectual

disability

Defects in the glycosylphosphatidylinositol–anchor biosynthesis pathway (PGAP2,

PGAP3, PIGA, PIGN, PIGL, PIGO, PIGT, PIGV, PIGW, PIGY)32,33

Epilepsy Lactosylceramide a-2,3 sialyltransferase (GM3 synthase; ST3GAL5), defects in the

glycosylphosphatidylinositol–anchor biosynthesis pathway (PIGM, PIGN, PIGA)

Adapted and updated from Garcia-Cazorla et al.29

NBIA 5 neurodegeneration with brain iron accumulation.
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homogenous with regard to the specific clinical findings

reported (eg, hearing impairment, basal ganglia involve-

ment), the age of onset of these, and their severity.

Besides the neuro(radiological) findings including affec-

tion of the sense organs (hearing loss, optic atrophy) and

the liver involvement that is of clinical impact only in

the neonatal period, no other organ systems are involved

in MEGDHEL syndrome. We can only speculate about

the cause for this distribution of organ involvement.

With regard to the homogeneity of the clinical pheno-

type, we cannot exclude that our data may be biased, as

the vast majority of patients were only diagnosed after

occurrence of neurological symptoms. However, the indi-

viduals in our cohort diagnosed in the first months of

life as well as the ones with the milder phenotypes also

developed the characteristic combination of signs and

symptoms. Furthermore, from our experience with

exome sequencing for rare pediatric disorders (the

Munich databases [12,000 exomes] encompass, eg,

>1,000 exomes of suspected mitochondrial cases,

>1,000 intellectual disability cases, >500 epilepsy cases,

and >100 acute liver failure cases), we did not identify

individuals with different or partial phenotypes.

We classify MEGDHEL syndrome primarily as a

disorder of the biosynthesis of complex lipids with second-

ary mitochondrial dysfunction, although MEGDHEL syn-

drome displays typical findings and the progressive course

of a mitochondrial disorder, including lactic acidosis and

3-MGA-uria.27 However, when measuring the OXPHOS

system in tissues of affected individuals, the mitochondrial

dysfunction greatly varies, and often measurements are

unremarkable. The same holds for the disturbed choles-

terol trafficking seen in MEGDHEL syndrome (visualized

by abnormal filipin staining of fibroblasts of affected indi-

viduals), which may underlie the neonatal liver involve-

ment. This combination of early liver pathology followed

by later onset neurological sequelae is also seen in Nie-

mann–Pick disease, type C. Neonatal liver failure is also a

frequent finding of mtDNA depletion disorders (eg, due

to variants in POLG, DGUOK, MPV17) and in some of

the liver biopsies of affected MEGDHEL individuals mild

mitochondrial depletion was reported. Based on the path-

ophysiology, we would not consider this a primary effect

of SERAC1 variants, but would regard this as a secondary

effect, as it has been reported similarly in several nonmito-

chondrial disorders (eg, propionic academia).28

The differential diagnosis of MEGDHEL syndrome

depends on the “key” sign or symptom an individual

presents; Table 2 provides an overview. In general, MEGD-

HEL should be considered in individuals with (1) neonatal

adaptation problems in combination with hypoglycemia

and/or (reversible) liver failure, (2) the rare clinical

combination of deafness and dystonia, (3) a clinical course

with rapid regression and development of spasticity and

dystonia starting around 18 months of age, and (4) the

pathognomonic finding of the “putaminal eye” on cerebral

MRI. In all these cases, urinary organic acid analysis and

appropriate genetic testing for SERAC1 variants should be

performed.

MEGDHEL syndrome is one of the signature dis-

orders of a new group of disorders with a defect in the

biosynthesis of phospholipid; Table 3 provides an over-

view of the subgroup of these disorders with central ner-

vous system involvement.29–33

Currently, no effective treatment for MEGDHEL

syndrome is available. Disease management options are

directed toward proper supportive care.
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