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ABSTRACT

This manuscript describes the use of ultrasound elastography,

with the exception of liver applications, and represents an

update of the 2013 EFSUMB (European Federation of Societies

for Ultrasound in Medicine and Biology) Guidelines and

Recommendations on the clinical use of elastography.

ZUSAMMENFASSUNG

Diese Arbeit beschreibt den Einsatz der Ultraschall-Elastogra-

fie mit Ausnahme der Leberanwendungen und ist eine Aktua-

lisierung der Leitlinien und Empfehlungen der EFSUMB

(European Federation of Societies for Ultrasound in Medicine

and Biology) von 2013 zum klinischen Einsatz der Elastografie.

ABBREVIATIONS

SE strain elastography
SWE shear wave elastography
pSWE point shear wave elastography
TE transient elastography
IQR interquartile range
IQR/M interquartile range/median
ARFI acoustic radiation force impulse
BIRADS Breast Imaging Reporting and Data System
TIRADS Thyroid Imaging Reporting and Data System
TI thermal index
MI mechanical index
SR strain ratio
SH strain histogram
EFSUMB European Federation of Societies for Ultrasound

in Medicine and Biology
ECMUS European Committee of Medical Ultrasound

Safety
WFUMB World Federation for Ultrasound in Medicine and

Biology
LoE levels of evidence
GoR grades of recommendation

1. Introduction
This manuscript describes the use of ultrasound elastography,
with the exception of liver applications, and represents an update
of the 2013 EFSUMB (European Federation of Societies for Ultra-

sound in Medicine and Biology) Guidelines and Recommendations
on the clinical use of elastography. A taskforce comprising
32 EFSUMB members was established in 2017 to draft a manu-
script derived and updated from the previous EFSUMB guidelines
on elastography: part 1 (Basic Principles and Technology) and
part 2 (Clinical Applications) [1, 2]. For each recommendation
levels of evidence (LoE) and grades of recommendation (GoR)
were also included to show the clinical role and value of elastogra-
phy in various non-liver applications. These were assigned accord-
ing to the Oxford Centre for Evidence-based Medicine criteria
(http://www.cebm.net/oxford-centre-evidencebased-medicine-
levels-evidence-march-2009/). A consensus opinion was estab-
lished by vote as follows: strong consensus (> 95 %), broad con-
sensus (> 80 %), with approval, disapproval or abstaining from
each participant. The manuscript was prepared initially by e-mail
communication and was discussed in a consensus meeting in
Frankfurt am Main, Germany, during February 2018.

2. Training
EFSUMB maintains a policy to attain high quality in all aspects of
ultrasound education and to promote excellent professional
standards in the practice of elastography. EFSUMB has defined
three levels of competence, defined in the document on minimal
training requirements [3], and these training levels also apply to
the application of elastography. To ensure high-quality scanning
and the lowest possible intra-operator variability, EFSUMB recom-
mends that ultrasound elastography should be performed by
operators that have passed competence Level 1. This is particu-
larly relevant to the evaluation of focal lesions present in various
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organs as these lesions must be first assessed by B-mode and
Doppler ultrasound [4]. However, it is possible to train dedicated
personnel to selectively perform elastography, e. g. for the thyroid
gland [5]. Nevertheless, there has to be an appreciation of the dif-
ference between acquisition and interpretation of elastography,
as the latter also requires knowledge of the patient’s clinical his-
tory, hematological and biochemical parameters, and other com-
parative imaging findings. Furthermore, experience in ultrasono-
graphy is important as this influences the ability to perform
shear wave measurements, particularly in obese patients [6]. For
all ultrasound operators it is important to follow international
guidelines, obtain adequate knowledge and training, and to
perform elastography in accordance with national medico-legal
regulations.

RECOMMENDATION 1

The operator should obtain adequate knowledge and training

in ultrasonography and elastographic methods and perform

the examination within the medico-legal framework of the

specific country (LoE 5, GoR C) (For 20, Abstain 0, Against 0).

3. Terminology
Terminology of ultrasound elastography has been widely accep-
ted [1, 7]. In the following, we briefly refer to the distinction be-
tween strain elastography (SE) and shear wave elastography
(SWE), which includes acoustic radiation force impulse (ARFI)
based techniques and transient elastography (TE). All available
ultrasound elastography methods employ ultrasound to measure
the internal tissue shear deformations resulting from an applied
force but the type of force is important. If the force varies slowly
relative to the shear propagation time to the depth of interest, as
is the case for transducer palpation or physiological motion, it is
considered quasi-static. The signal processing within the scanner
for all current commercial ultrasound elastography methods
begins with the measurement of tissue displacement as a function
of spatial position and time, which is performed using cross-corre-
lation tracking, Doppler, or other signal processing. The various
elastography methods differ importantly according to what they
do with these displacement data, to create an elastogram or elas-
ticity measurement.

According to the EFSUMB guidelines, there are two options for
the property displayed [8, 9]:
▪ Display tissue strain or strain rate, calculated from the spatial

gradient of displacement or velocity respectively, as in SE. SE is
a type of quasistatic elastography, because the applied force
varies slowly, while the acquired images are qualitative for
tissue properties.

▪ Display shear wave speed, calculated by using the time varying
displacement data to measure the arrival time of a shear wave
at various locations. There are a number of such methods,
which are grouped under the heading SWE, and include tran-
sient elastography (TE), point shear wave elastography (pSWE)

and multidimensional SWE (2D-SWE and 3D-SWE). These are
based on either a transient shear deformation induced by a
controlled applied force (TE) or by quantification of tissue
displacement induced by acoustic radiation force impulse
(ARFI) [8, 9].

Most SE ultrasound systems do have an indicator (quality index)
displayed in real time, indicating that the degree of compres-
sions/decompressions is appropriate to generate repeatable and
reproducible SE images [7 – 11]. The pressure and direction of
compressions can be changed by the examiner, especially for
external ultrasound procedures, with the compressions/decom-
pressions needed by most systems being less than 2 %. Quality
factors for the shear wave speed estimate are available also for
the 2D-SWE techniques. For ARFI-based techniques, an approach
similar to that of TE has been employed to assess the quality of the
measurement, including the interquartile range (IQR) values (i. e.
the difference between the 75th and 25th percentile) and
IQR/median. Assessment is considered reliable when the IQR is
less than 30% of the median [8, 9]. The values obtained for SWE
vary between different machines and are not interchangeable.

For more terminology and quality assurance details, refer to
the EFSUMB and WFUMB guidelines on the use of elastography
[1, 2, 7 – 11].

4. Safety
Elastography needs a “push” to the organ of interest that can be
produced either mechanically or acoustically and may be quasi-
static or dynamic. Different techniques are commercially available
for the measurement of elastic values for an increasingly wide
range of clinical applications. It is essential to know the principle
of each of the techniques and how it is applied to understand the
implications for patient safety [1– 3]. A possible risk depends on
the technology or type of elastography used and its anatomical
application.

4.1 Methods

Techniques which utilize a mechanically induced force to generate
SE, strain rate imaging, TE and time harmonic elastography (which
uses external vibrations at multiple frequencies to create com-
pound shear wave speed maps) share the same output issues as
conventional B-mode ultrasound examination [1]. Therefore,
applications of TE measuring quantitative stiffness data were
demonstrated to be feasible for children to assess not only liver
stiffness data [12, 13] but also spleen stiffness measurement
[14] with no increased risk. Also, there is new evidence that
patients with cardiac pacemakers or implantable cardioverter
defibrillators, have a low potential to be harmed by TE applica-
tions [15, 16].

Acoustically induced techniques which require push pulses
(known as ARFI imaging, ARFI quantification, pSWE, SWE [2]) on
the other hand operate with higher output (higher TI and MI
values) [17, 18]. The safety profile is comparable with pulse-
wave Doppler mode and the acoustic output will depend on the
applied sequence and repetition of pushing and tracking pulses.
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A certain amount of energy is required to displace the tissue, even
a few microns, using acoustic radiation force to generate shear
waves within the tissue (longer pulses of up to 1000 μs are need-
ed, as compared to short pulses up to 2 μs for diagnostic
ultrasound) [8, 9]. The number of push pulses and repetitions dur-
ing the measurement determine the amount of energy deposited
in the tissue. Simulations have revealed a possible temperature
rise of about 5 degrees Celsius if bone is present or sensitive tis-
sues such as the eye and a fetus are involved with the temperature
maximum at the focus [19 – 21]. Also, tracking beams, repeated
with high frequencies, use pulse pressures close to the upper
Food and Drug Administration limit (MI ≤ 1.9) to ensure a suffi-
cient signal-to-noise ratio for reliable detection [22]. During
ARFI imaging, the displayed indices (MI and TI) may be underesti-
mated.

RECOMMENDATION 2

To comply with safety, the ALARA (as low as reasonably

achievable) principle should be applied when using ultra-

sound elastography (LoE 2b, GoR B) (For 18, Abstain 2,

Against 0).

RECOMMENDATION 3

Caution is recommended for shear wave elastography using

long pulse sequences, particularly when exposing sensitive

tissues (LoE 2b, GoR B) (For 19, Abstain 1, Against 0).

5. Breast

5.1 Background

Breast elastography is used for differentiating benign focal lesions
from suspicious focal lesions – benign lesions have low stiffness,
while malignant lesions have high stiffness. Both strain and shear
wave methods have been evaluated for improving the generally
high sensitivity and specificity of the Breast Imaging Reporting
and Data System (BIRADS) and it is recommended that they are
used as add-ons to the regular B-mode examination.

5.2 Methods

5.2.1 Strain elastography

SE images in breast ultrasound may be evaluated visually using
the Tsukuba score (also known as the Itoh or Ueno score) [23],
semi-quantitatively using strain ratio (SR) or strain histograms
(SH) [24] or by the lesion size on elastography divided by the
lesion size on B-mode ultrasound (E/B ratio) [25]. An optimal
elastogram includes the glandular tissue, the surrounding fat,
and the lesion [11].

The Tsukuba score is a five-point visual scale, where the lesion
is scored according to the extent of stiff tissue. A lesion not stiffer

than the surrounding tissue is designated as 1, a value of 2 or 3 is
assigned to lesions with increasing proportions of stiff tissue, a
value of 4 is assigned to a lesion that is stiffer throughout, and
5 indicates that the stiffness extends beyond the margins of the
mass seen on B-mode. The best cut-off point for discriminating
benign from suspicious masses has been shown to be a score
between 3 and 4 [26 – 28]. It has been shown that SE, in addition
to B-mode ultrasound, increases the specificity of the examina-
tion (up to 97%) and helps to avoid unnecessary biopsies [29].

Anechoic lesions with liquid content show a typical three-
layered echo-pattern in SE, called the Blue Green Red (BGR) sign.

5.2.2 Shear wave elastography

For SWE, findings are measured in m/s but may also be reported in
kPa depending on the system used. As for SE the optimal image
should include the lesion, fat and the glandular tissue. Malignant
tumors tend to be more heterogeneous and stiffer than benign
tumors. Often the stiffness seems to be most marked at the per-
iphery of the mass and may demonstrate such high values that
the system is unable to record a measurement.

5.3 Clinical Applications

5.3.1 Evaluation of breast masses

An early study using SR in 99 nonpalpable benign and malignant
breast masses established an optimal cut-off of 2.24 and stated
that the higher the SR, the higher the risk of malignancy [30].
The cut-off for SR has since been evaluated in several studies
with different systems and is incomparable between different
vendors, as seen in other organ applications. In a recent meta-
analysis [31], the accuracy of SR was evaluated based on 9 studies
(2087 tumors) with a sensitivity of 0.88 and a specificity of 0.83.
The E/B ratio (ratio of the lesion size with SE to the lesion size with
B-mode ultrasound) increases with increasing tumor grading,
with low grade tumors having a ratio close to 1 [11].

In the BE1 multicenter study SWE results were studied retro-
spectively and several parameters were examined. One finding of
the study was that the addition of SWE resulted in some BIRADS 3
lesions appearing stiffer and potentially allowed for an upgrade to
a 4a mass, requiring a biopsy. If SWE had been included and used
in this way, the overall sensitivity and specificity would have
increased to 98.6 % and 78.5 % versus 97.2 % and 61.1 % for
B-mode ultrasound alone [32]. Increasing stiffness has also been
shown to correlate with increasing tumor grading [33 –36].

In cysts with pure liquid, no signals are obtained from the shear
waves and the lesion is seen as black. However, in cysts with a
higher viscosity shear wave signals may be obtained depicting
the cyst as having a low stiffness.

5.3.2 Evaluation of axillary lymph nodes

Both SWE and SE have been used in the evaluation of axillary
lymph nodes, with one study reporting a sensitivity and specificity
of 82.8 % and 69.6 %, respectively, using SWE to distinguish
between benign and malignant lymph nodes using a cut-off of
1.44m/s [37]. Using SE, the sensitivity was 60% and the specifici-
ty was 79.6 % for the diagnosis of malignancy [38]. Another study
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compared the AUROC for elastography with the AUROC for con-
ventional B-mode ultrasound. The values were 62 % and 92 %,
respectively, and no significant improvement was shown when
elastography was added to B-mode ultrasound (AUC: 93%) [39].

5.3.3 Prognosis

The key factors for prognostic information are provided by histo-
logical and pathological analysis, based on cancer sub-typing and
also immuno-histochemical analysis. Univariate analysis has dem-
onstrated a significant correlation between stiffness of a breast
cancer and prognostic factors. For SWE, studies reported an
increased stiffness for cancer grading of more malignant tumors,
larger lesion size, tumor and lympho-vascular invasion in invasive
breast cancer. Triple-negative carcinomas (testing negative for
oestrogen, progesterone and HER2 receptors), which are often
evaluated with BIRADS 3 on B-mode ultrasound, are quite difficult
to assess in clinical practice. SWE is reported to show increased
stiffness in these cases and can lead to the correct assessment
[33 – 35, 40].

A study reporting the analysis of 396 breast cancers showed
that SWE is an independent predictor of lymph node metastasis
when using E-mean (mean elasticity values for a defined region
of interest) as a descriptor. When the breast cancer had E-mean
< 50 kPa, only 7 % of the lymph nodes were metastatic, whereas
41 % of the lymph nodes were positive when E-mean was higher
than 150 kPa [41].

5.3.4 Efficacy of neoadjuvant therapy

The tumor response to neoadjuvant chemotherapy may be eval-
uated with different imaging modalities. In a study with a small
sample size of 15 patients, the possibility of predicting response
to neoadjuvant chemotherapy with SE was reported [42]. How-
ever, larger studies for SE using commercially available systems
are not available. A significant correlation between response to
treatment and the decrease in heterogeneity and tumor stiffness
has been reported [43, 44]. Currently, imaging methods other
than elastography should be used in the evaluation of tumor
response to neoadjuvant chemotherapy.

5.4 Limitations and artifacts

Pre-compression with the transducer should be avoided as this
increases the stiffness of all tissues. Normal fatty tissue has
E-mean values ranging from 5 – 10 kPa (using SWE) if the scale is
from 0 – 180, although the color scale may be changed. If the
color changes according to these values, the pre-compression
should be adjusted [45].

RECOMMENDATION 4

Ultrasound elastography could be used to increase diagnostic

confidence in the characterization of a breast lesion (LoE 2a,

GoR B) (For 20, Abstain 0, Against 0).

RECOMMENDATION 5

A BIRADS 3 lesion appearing stiffer on breast ultrasound elas-

tography should be considered for biopsy (LoE 2a, GoR b)

(For 20, Abstain 0, Against 0).

6. Prostate

6.1 Background

The screening standard for prostate abnormalities has been the
combination of digital rectal examination and the serum prostate
specific antigen (PSA) level. However, PSA screening leads to a
substantial number of unnecessary biopsies in patients with no
or indolent cancer who do not need immediate treatment [46]
and has a high false-negative rate (17 – 21 %) [47]. Saturation
biopsy (up to 40 cores) can rule out prostate cancer, but has
many limitations, including cost and morbidity, and over-diagno-
sis of microscopic tumor foci [48]. SE and SWE assessment and
identification of stiff prostatic tissue with a transrectal ultrasound
approach can be useful as described in previous elastography
guidelines [1].

6.2 Methods

6.2.1 Strain elastography

Hypoechoic stiff lesions of the prostate are suspicious for malig-
nancy [49]. Slight compressions are induced using the transrectal
transducer. The use of an inflatable balloon has been suggested to
improve the standardization of compressions. The elastography
box should cover the entire gland and the surrounding tissues,
but avoid the bladder. Semi-quantitative information can be
derived by measuring the SR between two regions of interest.

Using stepwise scanning of the prostate from base to apex, SE
allows detection of stiff regions and provides stiffness compari-
sons between lesions and the adjacent prostatic tissue. Most stud-
ies report a significant improvement in prostate cancer identifica-
tion with SE, including guidance for targeted biopsies [50 – 53].
However, there are still controversies and one recent study re-
ported the inability to differentiate prostate cancer from chronic
prostatitis [54]. The sensitivity, specificity, negative predictive val-
ue, positive predictive value, and accuracy for identifying cancer
index lesions for focal therapy were 58.8 %, 43.3 %, 54.1 %,
48.1 %, and 51.6 %, respectively [55]. Though improvement in
biopsy guidance is reported in many studies [53, 56, 57], others
did not confirm this result [58].

6.2.2 Shear wave elastography

Unlike SE, SWE requires no compression on the rectal wall [59].
Optimized settings include maximizing penetration and setting
up an appropriate scale. The image can cover the entire gland in
the transverse section when the prostate is not markedly en-
larged. Otherwise, each side of the prostate is imaged separately
from base to apex for review and measurements of elastography
values. For each plane, the transducer is maintained in a steady
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position until the image stabilizes. Hypoechoic stiff lesions are
suspicious for malignancy. The ratio between the mean elasticity
values of two regions can be calculated.

In young healthy subjects the entire prostate exhibits a uni-
form low stiffness appearance with low elasticity values [60, 61].
In benign prostate hyperplasia, the peripheral zone remains
homogeneous with low stiffness, while the central and transition
zones become heterogeneous and stiff, particularly when there
are calcifications. Typical benign peripheral lesions have a similar
stiffness as the surrounding normal parenchyma, while cancers
are stiff [60, 61]. The best cut-off stiffness value to maximize the
negative predictive value for malignant lesions was found to be 35
and 37 kPa in two studies with 2D-SWE [57, 58] with a sensitivity,
specificity, PPV and NPV of 63 %, 91%, 69.4 %, and 91%, respec-
tively. The SWE ratio provided additional information as it consid-
ers the increased stiffness of the peripheral zone from calcifica-
tion and chronic prostatitis. The ratio showing the best accuracy
to differentiate between the nodule and the adjacent peripheral
gland for benign and malignant lesions was 1.5 ± 0.9 and 4.0 ±
1.9, respectively (p < 0.002) [61].

6.3 Clinical applications

Several studies indicate that elastography provides useful addi-
tional information to conventional transrectal ultrasound for pros-
tate cancer detection. Applications that have been more exten-
sively investigated include the characterization of abnormal
areas, the detection of lesions not seen with any previous imaging
technique and biopsy targeting. Additionally, elastography could
be combined with other imaging techniques in the same exami-
nation to address the heterogeneous growth pattern of prostate
cancer. Improvement in detection and prediction of cancer was
seen during multiparametric ultrasound when elastography is
used as a triage test followed by contrast-enhanced ultrasound
or as an adjunct during image fusion of magnetic resonance
imaging and transrectal ultrasound [62– 65].

6.4 Limitations and artifacts

Both techniques suffer from intrinsic limitations: not all cancers
are stiff and not all stiff lesions are cancers (particularly in the
presence of calcifications and fibrosis). The transrectal technique
carries an intrinsic risk of inadvertently applying excess pre-com-
pression because of the end fire arrangement of the transducer.

Limitations of SE include the non-uniform force over the gland
and intra- and inter-operator dependency. 2D-SWE has additional
limitations such as a slower frame rate and the small elasticity box
which only allows examination of half the gland at a time.

RECOMMENDATION 6

Transrectal ultrasound elastography of the prostate could be

used to identify suspicious target regions for biopsy in order

to increase the diagnostic yield of biopsy (LoE 2b, GoR b)

(For 20, Abstain 0, Against 0).

7. Thyroid

7.1 Background

Chronic thyroiditis and malignant tumors increase diffuse or focal
thyroid stiffness [66]. Elastography is emerging as a potential indi-
cator for these abnormalities and may provide additional informa-
tion to support clinical decision-making.

7.2 Classification systems – TIRADS

Accurate estimation of the malignancy risk by ultrasound could
help to select thyroid nodules with a high risk of cancer for fine
needle aspiration and biopsy (FNAB). More recently, an assess-
ment concept called “grading system” or “reporting system”
termed “Thyroid Imaging Reporting and Data System” or TIRADS
has emerged, allowing thyroid nodules to be classified into
categories related to their ultrasound patterns [66 – 74].

7.3 Methods

SE is the initial method which has been implemented on most
commercially available ultrasound systems, thus evidence is quite
consolidated on this topic, with a number of studies and meta-
analyses being published [75 – 81]. More recently, SWE has
become available for thyroid evaluation with multiple studies
reported [82 – 85].

7.4 Clinical applications

7.4.1 Strain elastography

Two different methods of assessing SE outcome have been report-
ed, namely semi-quantitative scoring systems involving five, four,
or two color patterns respectively [86–88] and SR, which compares
the strain values of the nodule to those of the surrounding thyroid
parenchyma (parenchyma-to-nodule ratio) or the surrounding
muscles (muscle-to-nodule ratio) [4, 89]. Although no consensus
has been reached about the cut-off values to use for SR (as low as
1.5 for benign nodules and as high as 5 for malignant nodules have
been suggested), it has been shown that the SR has a lower inter-
observer variability and is more easily learned than simple color pat-
terns [4]. Importantly, most studies on SE were performed in selec-
ted populations with a high prevalence of malignant nodules. It has
been shown that SE has a lower sensitivity and specificity in a low-
risk population [4, 90]. Furthermore, tumors other than papillary
carcinomas may have an unexpectedly low stiffness [4, 91, 92]. In
patients with coexistent diffuse thyroid disease, the role of SE in
detecting malignant nodules has still not been validated [4]. The
most recent meta-analysis [81] included 13 studies on SE performed
from 2007 to 2016, with sensitivities ranging from 48% [93] to 97%
[94] and specificities ranging from 64 % [95] to 100 % [94]. The
pooled sensitivity and specificity of the meta-analysis was 84 %
(95 %CI, 76 % – 90%) and 90 % (95 % CI, 85 % – 94%), respectively,
with pooled accuracy of 94% (95%CI, 91% –96%).

7.4.2 SWE

The mean SW elasticity for malignant thyroid nodules is 19.60 –
52.18 kPa with a reported cut-off value of 26.6 – 65 kPa [96 –
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104]. For benign nodules the mean elasticity is lower at 15.3 – 28
kPa [96 – 104]. Studies included nodules from 2 – 71mm and
most were papillary carcinomas. Therefore, cut-off values have a
wide range and a single threshold cannot be established [82, 83,
85]. The sensitivity for SWE has been reported as 63.8 – 93.8 %,
and the specificity as 50 – 88.2 % [96, 97, 100, 102, 104 – 106].
The most recent meta-analysis [82] included 14 studies and
2851 thyroid nodules with cut-off values ranging from 26.6 to
85.2 kPa. It concluded that 2D-SWE has a fairly good diagnostic
accuracy although the sensitivity and specificity are average.
Studies using ARFI indicated that it enables the evaluation of tis-
sue stiffness and the mean SWE velocity for malignant nodules is
3.13 – 3.9m/s [96, 107 – 111] with a cut-off value 2.15 – 3.77m/s
[96, 107 –111]. Interestingly, a recent meta-analysis [81] showed
that SE and SWE are not significantly different in terms of sensitiv-
ity (SWE pooled sensitivity = 79 % [95 %CI, 73% – 84%]) but SE is
superior to SWE in terms of specificity (SWE pooled specifi-
city = 87% [95%CI, 79% –92%]) and accuracy (SWE pooled accu-
racy = 83% [95%CI, 80% – 86%]).

7.5 Limitations and artifacts

The thyroid is among the most extensively investigated non-liver
application after the breast. Nevertheless, the relevance in the
malignant/benign differential diagnosis remains unclear. Recent
American Thyroid Association and Korean guidelines do not con-
sider stiffness as an indicator of malignancy. However, elastogra-
phy was recently mentioned by both the French TIRADS and the
EU-TIRADS as a complementary imaging tool [70, 112]. Thus,
elastography should not replace B-mode US assessment but
should be used as a complementary tool for assessing nodules
for fine-needle aspiration, especially due to its high negative
predictive value (only 3 % false-positive results) [70].

RECOMMENDATION 7

Ultrasound elastography of the thyroid could be used as part

of nodule characterization, particularly with use of semi-

quantitative methods (LoE 2A, GoR A) (For 17, Abstain 3,

Against 0).

8. Pancreas

8.1 Background

Elastographic properties of the pancreas may be studied with a
transabdominal approach, as well as with an endoscopic or intra-
operative ultrasound approach. Pancreatic transabdominal ultra-
sound elastography requires clear visualization of the gland
(which is not always possible with external ultrasound), whereas
endoscopic ultrasound (EUS) is a minimally invasive technique
that provides high-resolution images of the pancreas, with the
close vicinity of the transducer and the pancreas avoiding artifacts
(fat, gas, etc.).

8.2 Methods

For the elastographic assessment of the pancreatic parenchyma
and focal pancreatic lesions, SWE [7, 113 – 133] as well as SE
[7, 119, 120, 123, 124, 131, 134 – 177] may be used. Transab-
dominal elastography can be performed both by using SE with
qualitative and semiquantitative information, and SWE with quali-
tative and quantitative data. EUS can be performed currently only
with SE techniques with qualitative and semi-quantitative evalua-
tion [178]. For the semi-quantitative approach, both SR and SH
can be used in order to obtain an estimate of the elasticity [153].

The normal pancreas has a uniform intermediate stiffness
throughout the head, body, and tail [123, 124, 129, 130, 132].
Embryologically, the pancreas develops from two primordia, a
dorsal and a ventral part. With SE, elasticity properties seem to
be almost similar in the two parts of a healthy pancreas with a
homogeneous low stiffness appearance [158]. Studies in normal
volunteers affirmed that the mean wave velocity value obtained
in a healthy pancreas with the ARFI technique is approximately
1.40m/s [114].

8.3 Clinical applications

8.3.1 Effect of aging, gender, anatomical segment, and
other variables

With advancing age, pancreatic elasticity may decrease as has
been shown consistently for SE [134] and SWE [121, 129, 131].
Data on the influence of gender, body mass index (BMI), and pan-
creatic echogenicity are not consistent, with most studies demon-
strating no significant influence of these variables on shear wave
velocity [113, 116, 121, 129, 131]. One study using SE with SH
analysis showed lower mean strain values in patients with a hyper-
echoic pancreas and higher BMI [134]. In another study shear
wave velocity was significantly lower in men compared to women
[129].

8.3.2 Acute pancreatitis

The consistency of the pancreatic parenchyma usually becomes
stiffer in acute pancreatitis as compared to the healthy pancreas,
which is identifiable with SE and SWE, including ARFI [116]. Ne-
crosis is identified as a low stiffness area. However, studies using
elastographic techniques in patients with acute pancreatitis are
conflicting [116, 130, 179, 180]. One prospective study failed to
find significant differences in pancreatic shear wave velocities be-
tween patients with acute pancreatitis and healthy volunteers
[130]. Three other studies showed significantly higher pancreatic
shear wave velocities in patients with acute pancreatitis compared
to persons with a normal pancreas [116, 179, 180]. In one of
these studies, shear wave velocities of patients with acute
pancreatitis were higher than in chronic pancreatitis patients
[179]. Another prospective study compared transabdominal ARFI
imaging with B-mode ultrasound and computed tomography (CT)
at hospital admission for the diagnosis of acute pancreatitis. SWE
was more accurate (100%) for the diagnosis of acute pancreatitis
than CT (76%) and B-mode ultrasound (53.4 %). The authors were
able to identify segmental involvement of the pancreas as well as
parenchymal necrosis [180].
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8.3.3 Chronic pancreatitis

Qualitative SE displays the pancreatic parenchyma in chronic
pancreatitis with a heterogeneous colored (honeycombed) pat-
tern, with predominantly stiffer strands. Nevertheless, differential
diagnosis between chronic pancreatitis and pancreatic tumor can
be challenging during elastography because both diseases have a
similar stiffness. Therefore, elastography alone is not able to
distinguish chronic pancreatitis from malignant tumors [164].

Both SWE and SE may be used to assess pancreatic fibrosis and
chronic pancreatitis and in particular to grade the severity of
fibrosis (based on simple scoring systems with 4 grades) and
chronic pancreatitis [115 – 117, 122 – 124, 127, 131, 136, 138,
142, 146, 151, 164, 167, 169, 170, 179, 181 – 185]. In patients
with chronic pancreatitis, pancreatic shear wave velocities
[116, 124, 127, 131, 186], SR [148] and SH [146] are significantly
higher than in healthy volunteers or patients with a normal
pancreatic parenchyma. Several studies have shown a significant
correlation between SWE [117, 123, 184] and semi-quantitative
SE [138, 167, 169, 185] and histological pancreatic fibrosis stage.
Moreover, SWE [122, 124, 169] and SR [141] are significantly
correlated with stages of chronic pancreatitis derived from
EUS-based criteria for the diagnosis of chronic pancreatitis.
Another recent study showed significantly higher pancreatic SWE
velocities in patients with clinical markers of severe disease
(disease duration > 10 years, chronic analgesic treatment, lower
body weight) [127]. A direct relationship between the SR of
pancreatic parenchyma and low stiffness peripancreatic tissue
and the probability of pancreatic exocrine insufficiency was
shown in a study using EUS-SE [136]. Another study reported an
inverse correlation between preoperative SW velocity and post-
operative exocrine function in patients undergoing pancreatic
resection [117].

EUS elastography might be helpful in identifying patients with
autoimmune pancreatitis, due to the unique appearance of
diffuse stiff tissue with an elastographic pattern visible both in
the mass lesion and in the adjacent pancreatic parenchyma, with
mainly stiff color signals that were evenly spread over the head
and the body of the pancreas [161, 187].

8.3.4 Preoperative indications

Recently, elastography has been used prior to pancreatic surgery
to examine the gland stiffness in order to assess the risk of surgical
complications. Evaluation of pancreatic stiffness might be an
objective index to estimate pancreatic fibrosis and predict the
risk of postoperative pancreatic fistula. Data from several studies
suggest that SWE [115, 117, 184, 188] and SE [138, 170, 185]
may be used for this purpose. In particular, a pancreatic parench-
yma with a low stiffness as determined by semi-quantitative SE
[138, 170] or SWE [117] proved to be an independent predictor
of postoperative pancreatic fistula.

8.3.5 Pancreatic ductal adenocarcinoma and other solid
pancreatic neoplasms

In pancreatic ductal adenocarcinoma (PDAC), shear wave veloci-
ties are significantly higher than in normal pancreatic parenchyma

obtained in healthy subjects [116, 125, 133] as well as in pancre-
atic parenchyma surrounding the tumor [125]. Shear wave veloci-
ties measured in PDAC usually exceed 3m/s [116, 125, 126, 133].
However, there is a significant overlap of SWE velocities between
malignant solid lesions, benign solid lesions, and chronic pancrea-
titis [116, 126]. One study demonstrated a significantly higher
difference between the SWE velocities of malignant lesions and
surrounding pancreatic parenchyma compared to the difference
values between benign lesions and surrounding parenchyma
[126]. No large prospective comparative studies evaluating the
accuracy of SWE for the characterization of solid pancreatic
lesions are available.

More evidence is available on the clinical value of EUS-SE for
the differential diagnosis of solid pancreatic lesions [172, 189 –
192]. An early study described EUS elastography patterns in
healthy subjects, in diffuse chronic pancreatitis and in focal pan-
creatic lesions [139]. All malignant pancreatic tumors and serous
cystadenomas showed a honeycomb pattern of medium stiffness,
and were well delineated against healthy parenchyma. However,
this pattern was also observed in half of the chronic pancreatitis
patients, so that the specificity of the method was reported at
only about 60%, attributed to fibrotic structures producing similar
mechanical properties in cancer and chronic pancreatitis [139,
164]. Therefore, elastography is not sufficient to contribute to
the early diagnosis of pancreatic carcinoma in chronic pancreatitis
[139, 164].

Qualitative [137, 139, 163, 164, 193 – 195] and semi-quantita-
tive SE approaches (SR, SH analysis) [135, 142 – 144, 149, 150,
152 – 156, 175, 177, 196 – 199] have been used for the differen-
tial diagnosis of benign and malignant focal pancreatic masses,
with both showing high overall accuracy. Computer-aided diagno-
sis techniques might improve the accuracy for the differential di-
agnosis of focal pancreatic masses, with artificial neural networks
being used most often [154, 156]. Several multicenter studies
[155, 156, 194] and other prospective studies [135, 149, 150,
152, 177, 197, 198] consistently showed a very high sensitivity
(over 90 %), but considerably lower specificity and negative pre-
dictive values for the diagnosis of benign versus malignant focal
pancreatic masses. These findings have been summarized in
meta-analyses, affirming the very high sensitivity (95 % – 99 %)
and negative predictive value of EUS-SE, but limited specificity
(64% – 76%) and positive predictive value to diagnose pancreatic
malignancy [172, 189 – 192]. Significant differences in favor of
qualitative or semi-quantitative assessment techniques have not
been observed in meta-analyses. Therefore, there is expert
consensus that SE cannot replace a cytopathological diagnosis of
focal pancreatic disease [162, 200, 201]. Combining several EUS-
based advanced tools of tissue characterization may provide the
best results in differential diagnosis of focal pancreatic lesions
[135, 143, 144, 149, 202 – 205]. Nevertheless, when EUS-guided
sampling is negative or inconclusive, suspicious findings with elas-
tography and contrast-enhanced techniques will influence further
clinical decisions by indicating repeat sampling or direct referral
to surgery. On the other hand, the finding of a solid pancreatic
lesion with elastographic properties of low stiffness and without
hypo-enhancement in contrast-enhanced EUS is nearly always
predictive for the benign nature of the lesion. Since the negative
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predictive value of EUS-FNA for the diagnosis of a malignant solid
pancreatic lesion is only 72 % [203 – 207], such a finding may
prevent potentially nondiagnostic or risky procedures [195, 207].

8.3.6 Cystic pancreatic tumors

Elastography can have a role in pancreatic cystic lesions, both with
SE and with SWE, in particular with ARFI. SWE has been shown to
be accurate for the differentiation between serous and mucinous
cystic pancreatic lesions [133, 208 – 212]. Serous cystadenomas
are filled with serous fluid exhibiting similar physical properties
as water, while numerous and dense septa together with a fibrous
scar can be present in a mucinous cystadenoma. Therefore, the
microcystic serous cystadenoma appears as a very stiff lesion
with EUS-SE [139, 164, 196]. With ARFI, shear wave velocity in
serous cystadenoma is infinitely high and numerical values cannot
be obtained. Due to the more complex fluid content, shear wave
velocities in mucinous cystic lesions are very high, but numerical
values may be obtained in most cases [133, 208 – 212].

8.4 Limitations and artifacts

EUS-elastography suffers from technical limitations and artifacts.
Some issues are common with transabdominal ultrasound, such
as the need to obtain a close proximity to the target and to avoid
anatomical planes allowing slip movements anterior to or within
the imaged region [1]. In particular, large vessels in the imaged
area represent the main reason for shear stress damping. Issues
peculiar to EUS are essentially caused by the small size of the
transducer providing a limited stress source to image the region
of interest. In addition, it is very difficult to standardize the pres-
sure exerted by the echoendoscope tip to the gastrointestinal
wall, resulting in variability of the color mapping. Lastly, respira-
tion and heartbeat-induced movements of the target lesion may
cause a complete lack of color signal within the region of interest.
As far as the color mapping of EUS elastography is concerned,
disadvantages include subjective differences in color vision and
image categories that may not correspond well to pathology
[194]. The selection of frames for the SR or SH measurements is
user-dependent. In addition, unrepresentative elastograms or re-
ference tissues with a different distance to the stress source may
result in method bias [213]. For these reasons, finding an optimal
cut-off for differentiating pancreatic tumors from benign disease
has been challenging.

RECOMMENDATION 8

Transabdominal and endoscopic ultrasound elastography may

be used as additional imaging tools for the diagnosis and

grading of chronic pancreatitis (LoE 2b, GoR B) (For 20,

Abstain 0, Against 0).

RECOMMENDATION 9

Endoscopic ultrasound elastography could be used as a

complementary imaging tool for the characterization of solid

pancreatic lesions. However, it cannot decisively differentiate

focal pancreatitis from pancreatic carcinoma (LoE 2a, GoR B)

(For 20, Abstain 0, Against 0).

RECOMMENDATION 10

When a combination of endoscopic ultrasound elastography

with contrast studies suggests pancreatic cancer despite a

negative or inconclusive biopsy, repeated sampling or surgery

should be considered (LoE 2b, GoR B) (For 12, Abstain 7,

Against 1).

9. GastroIntestinal Tract

9.1 Background

The gastrointestinal tract wall may be visualized by ultrasound as a
layered structure consisting of typically 5 layers [214, 215]. When
examining the intestine, it is preferable to use frequencies above
7.5MHz to enable optimal visualization of wall layers, thickened
bowel wall and focal lesions. This also applies for SE and SWE.

9.2 Methods

SE and SWE are the methods used for elasticity imaging and
measurements in bowel examinations. Studies investigating elas-
tography of bowel wall lesions are predominantly based on SE.

9.2.1 Image interpretation and evaluation

Pathological lesions that increase wall thickness are most relevant
for SE and SWE. This is because the bowel wall is a thin structure
on ultrasound imaging that has natural peristalsis and allows con-
siderable movement on both the serosa and the luminal sides.
This tends to add artifacts to strain imaging and makes a targeted
SWE or SE measurement more difficult and user-dependent. The
bowel wall may become thickened in both neoplastic and inflam-
matory disease, predominantly in Crohn’s disease (CD). In partic-
ular, SE has been applied in order to clinically distinguish fibrotic
from inflammatory lesions in CD and to distinguish rectal adeno-
ma from adenocarcinoma.

9.3 Clinical applications

9.3.1 Distinction between fibrous and inflammatory
strictures in Crohn’s disease

Several studies on CD in animal models and human specimens
conclude that stiffness is associated with the presence of fibrotic
strictures. Some studies indicate that SE and SWE elastography
can differentiate fibrosis from inflammatory lesions [216 – 218].
A study compared SE in terminal ileum stenosis in CD reporting a
higher visual score of tissue stiffness in fibrosis using magnetic
resonance (MR) enterography as a reference [219]. Another ex-
vivo study on bowel specimens from CD and neoplastic lesions
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also showed that higher stiffness was present in both CD lesions
and in adenocarcinoma, but not in adenomas [220].

The results from seven small series were included in a systema-
tic review of 154 CD lesions in 129 patients [221], suggesting that
stiffness was significantly higher in fibrotic stenosis. Nevertheless,
the systematic review mentions “inhomogeneous and scarcely
comparable” endpoints, as authors used either absolute strain
values or a strain ratio with various anatomic structures for com-
parison (mesenteric fat surrounding the bowel wall or abdominal
wall muscles). In a study of ten patients, SE using the mean strain
in the bowel wall of affected and unaffected bowel segments pre-,
intra- and postoperatively found significant differences in strain
values in affected and unaffected segments which correlated
well with the histological distribution of connective tissue and col-
lagen content [222]. Also, the strain measurements had an
acceptable intraclass correlation coefficient (ICC) in the three
examinations. A study of 23 consecutive patients undergoing sur-
gery for CD [223] found excellent differentiation of patients with
severe ileal fibrosis by histology but also by using SR (including an
excellent inter-rater agreement). Conflicting findings are reported
in a prospective study on SE in 26 patients undergoing surgery for
stricturing CD. On preoperative ultrasound, the SR did not corre-
late with histological scoring of fibrosis or inflammation [224].
Strain imaging of bowel lesions in CD may predict the response
to anti-inflammatory treatment. In a prospective study of 30 pa-
tients with CD, the five patients who needed surgery had signifi-
cantly higher SR measurements at baseline and there was a signif-
icant negative correlation between the SR at baseline and wall
thickness following 52 weeks of anti-tumor necrosis factor (TNF)
therapy [225]. SWE should not be used as a method to distinguish
fibrotic from inflammatory lesions in CD based on current
evidence.

9.3.2 Characterization and staging of rectal tumors

The differentiation and staging of rectal tumors can be performed
using SE as an add-on to B-mode endoscopic rectal ultrasound
(ERUS). Thus, SE may improve the staging of rectal cancer and
differentiate adenoma from adenocarcinoma, when compared to
ERUS alone and with MR imaging (with high interobserver agree-
ment of recorded videos and images) [226 –228]. Another group
found good correlation between diffusion-weighted MR imaging
which is associated with fibrosis, and SWE of malignant rectal
tumors [229]. Another study assessed the performance of ERUS
for rectal tumors using SWE using an 8MHz endorectal transduc-
er, finding that the tumor stiffness measurements corresponded
accurately to the pathological tumor T-stage and diagnostic accu-
racy of tumor staging improved from 76.7 % to 93.3% [230].

RECOMMENDATION 11

Ultrasound strain elastography can be used to characterize

bowel wall lesions in Crohn’s disease (LoE 3b, GoRC) (For 19,

Abstain 1, Against 0).

RECOMMENDATION 12

Ultrasound elastography may improve the staging of rectal

cancer when used as an add-on to endoscopic rectal ultra-

sound and magnetic resonance imaging (LoE 2b, GoRC)

(For 17, Abstain 3, Against 0).

10. Spleen

10.1 Background

Spleen stiffness measurement is an elastography technique used
to assess the severity of chronic liver disease, mainly in conjunc-
tion with liver stiffness measurements for the evaluation of liver
fibrosis or portal hypertension-related complications. Various
SWE techniques have been investigated to predict the presence
of clinically significant portal hypertension, esophageal varices or
to predict long-term prognosis.

10.2 Methodology

Spleen elastography should be performed after at least 3 hours of
fasting and after at least 10 minutes of rest [231, 232], with the
patient in dorsal decubitus and with the left arm in maximal
adduction [233]. The transducer should be placed between the
left intercostal spaces in an area with a good ultrasound window
needed for TE [234], or at least 2 cm below the capsule for non-
TE techniques [235, 236], with the measurement preferably being
performed at the inferior pole [237].

10.3. Clinical applications

a) Assessment of liver fibrosis

Using spleen stiffness as a surrogate marker for staging liver fibro-
sis, two studies [238, 239] demonstrated a pooled sensitivity and
specificity for detecting significant fibrosis (F2) and cirrhosis (F4)
of 0.70 and 0.87 and 0.77 and 0.82, respectively with an AUROC
of 0.88 and 0.85, respectively [22].

b) Assessment of clinically significant portal hypertension

Spleen stiffness correlates well with the hepatic vein portal gradi-
ent and has an excellent diagnostic accuracy (AUROC =0.92) for
clinically significant portal hypertension, irrespective of the tech-
nique used [240], with TE showing a better correlation with the
hepatic vein portal gradient than measuring liver stiffness [234].
For values ≥ 46 kPa, the AUROC for clinically significant portal hy-
pertension varies from 0.846 to 0.966, with good sensitivity
(0.77 – 0.88) and specificity (0.79 – 0.91) [234, 241].

For pSWE, the overall correlation with the hepatic vein portal
gradient is similar and better than for liver stiffness measure-
ments [242], but for values > 10mmHg, the association is weaker
[242, 243]. However, for pSWE, the plotted sensitivity is higher
than for other techniques (0.98 vs. 0.62 –0.83), while the specifi-
city is lower (0.78 vs. 0.89 – 0.93), thus raising the possibility of
the heterogeneity and variability of this technique [240, 244].

434 Săftoiu A et al. The EFSUMB Guidelines… Ultraschall in Med 2019; 40: 425–453

Guidelines & Recommendations

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



As for 2D-SWE, the diagnostic accuracy varied significantly, as
AUROC analysis shows: 0.63 (for a cut-off value of 34 kPa) [245],
0.725 [235] or 0.84 [237]. Despite the fact that the last two stud-
ies recommend different cut-off values to rule-in (≥ 40 or
35.6 kPa) or out (≤ 22.7 or 21.7 kPa) clinically significant portal
hypertension, the diagnostic accuracy remains low for the study
by Procopet et al. [235] (12/40 correctly classified), but satisfac-
tory for the study by Jansen et al. [237] (66/111 patients correctly
classified). However, if a combined approach is used (both spleen
and liver stiffness measured), only 11/109 patients (89.9 % accu-
racy) are misclassified [237].

c) Assessment of oesophageal varices

TE of splenic stiffness has a good accuracy to detect the presence
of oesophageal varices (80.4 %), but it is unable to differentiate
the grade [233]. Values ≤ 40kPa were proposed to rule-out
esophageal varices, while values ≥ 55kPa were suggested to rule
them in [234]. In a meta-analysis, the pooled sensitivity and
specificity to detect varices was satisfactory (0.76 and 0.78,
respectively), while the sensitivity is better (0.86 vs. 0.69) for the
detection of varices needing treatment [246]. A modified calcula-
tion algorithm for TE was proposed, so that values > 75 kPa could
be measured, which proved to be the sole independent predictor
of the need to treat [247]. Therefore, a dedicated transducer and
calculation algorithm were developed, showing better perform-
ance compared with the original algorithm and with liver stiffness
[248].

For pSWE, the sensitivity and specificity for detecting oesopha-
geal varices varies from 0.31 and 0.79 [249] up to 0.95 and 0.92
[243]. However, the pooled performance for detecting the need
to treat appears to be lower than for TE [246], although the anal-
ysis did not take into account a report which showed very good
positive and negative predictive values: 0.97 and 0.89, respecti-
vely [243].

With 2D-SWE, [245] there is no discrimination between
patients with and without varices needing treatment. In a much
larger cohort, however, the AUROC for detecting oesophageal
varices of any grade was 0.8, while the probability is only 10% for
patients with compensated cirrhosis if the spleen stiffness is lower
than 25.6 kPa (10). If 2D-SWE SSM (</≥ 38 kPa) is used in a step-
wise approach alongside liver stiffness (</≥ 19 kPa) and platelet
count (≤/> 100x103), the oesophageal varices can be ruled-out
with 83 % accuracy and 74% of unnecessary endoscopies could
be eliminated [248].

d) Assessment of prognosis and response to therapy

Spleen stiffness can also predict liver-related complications, as the
only independent predictor of decompensation besides the MELD
score (if higher than 54 kPa), in a cohort of compensated hepatitis
C virus (HCV) cirrhosis, during a 2-year follow-up period [250]. No
data is available regarding the role of spleen stiffness in monitor-
ing the response to non-selective beta-blockers. Spleen stiffness
(assessed by pSWE) seems to decrease after TIPS placement
[251, 252], suggesting that spleen stiffness could be an additional
tool to evaluate TIPS efficiency.

Small series also suggest that successful antiviral therapy of
HCV cirrhosis induces a small reduction of spleen stiffness during
follow-up, which is not always significant and it is not as important
or as persistent as liver stiffness reduction [253, 254], reflecting
more likely a reduction of hepatic inflammation.

e) Miscellaneous

Spleen stiffness was also used to assess patients with non-cirrhotic
portal hypertension. In extrahepatic portal vein obstruction,
spleen stiffness increases and is higher in patients with a history
of bleeding [255]. In patients with idiopathic portal sinusoidal
disease, spleen stiffness is markedly increased, in contrast to qua-
si-normal liver stiffness values [256, 257]. Furthermore, a combi-
nation could be used in children with biliary atresia before or after
Kasai portoenterostomy to predict outcome or to monitor subse-
quent liver disease and portal hypertension [258, 259]. Spleen
stiffness by TE was also positively correlated with the grade of
bone-marrow fibrosis in patients with primary myelofibrosis,
suggesting that this could be a simple noninvasive method to
monitor disease progression [260].

10.4 Limitations and artifacts

TE can be performed in only 85 – 90% of cases, mainly because of
high BMI, presence of ascites, lung or colonic gas interposition, or
transverse spleen diameter < 4 cm [233, 234, 247]. An additional
12 – 21% of patients reach the maximum value (75 kPa) measured
by the conventional machine [233, 247], hence the applicability of
TE is approximately 70 %. The applicability of 2D-SWE is similar
and appears to be related to a higher BMI and smaller spleen size
[261]. As for pSWE, the applicability is higher (up to 97%) [242],
but the reproducibility is influenced by small spleen size and
central obesity [244].

RECOMMENDATION 13

Ultrasound elastography of the spleen can be used as an

additional noninvasive method to assess portal hypertension

(LoE 2b, GoR B) (For 20, Abstain 0, Against 0).

11. Kidney

11.1 Background

Renal elastography has been used for the noninvasive assessment
of chronic kidney disease (CKD), particularly for the early stages
when renal function is not yet significantly affected, or for disease
monitoring [262]. The hypothesis that the development of glo-
merular and interstitial fibrosis should lead to stiffness changes is
supported by experimental findings in a rat model of CKD [263].
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11.2 Methods & confounding factors

11.2.1 Strain elastography

SE can only be used for superficial kidneys, usually renal trans-
plants, mainly a qualitative technique that supposes uniform
deformation of the tissue of interest, with a limited role due to
the depth of the organ, the difficulty to apply reproducible homo-
geneous external deformation and the inability to achieve abso-
lute stiffness measurements [264].

11.2.2 Shear wave elastography

TE allows quantitative evaluation of the tissue stiffness and has
been widely used for liver fibrosis estimation [2, 265], but the
volume of tissue involved in the measurement is at a fixed depth
and has a length of 40mm, making this technique unsuitable for
renal stiffness estimation.

The inter-operator agreement of pSWE used in transplanted
kidneys obtained in different studies was fair or moderate with
the ICC ranging between 0.31 [268] and 0.47 [269]. In studies
performed in native kidneys, the reproducibility of the method
was strong, with ICCs between 0.60 [270] and 0.71 [271]. The
inter-operator agreement obtained in the elastographic assess-
ment of the kidneys (native and transplant) was lower compared
to studies of liver stiffness (ICCs are over 0.80), because of con-
founding factors. Currently, there are few studies available using
2D SWE techniques in the assessment of the kidneys [272, 273].

11.3 Clinical applications

11.3.1 Normal kidney stiffness

A limited number of studies (most of them using pSWE) report
normal kidney stiffness, and are different depending on the type
of pSWE device used. In adult native kidneys, normal cortical stiff-
ness values range from 2.15 to 2.54m/s with one system [114,
270, 271, 277 –279] compared to 1.23 to 1.54m/s with a differ-
ent system [280]. In 9 – 16-year-old children, higher pSWE stiff-
ness values were found, ranging from 3.00 to 3.33m/sec (mean
3.13 ± 0.09m/s, corresponding approximately to 29.4 kPa). In a
study performed in healthy people aged 18 – 30, 31 – 50, 51 – 65,
and above 65 years, pSWE was 2.94 ± 0.60, 2.26 ± 0.82, 2.48 ± 0.8
and 1.82 ± 0.63m/s, respectively [277]. In the same study, a sta-
tistically significant difference was found between women and
men. Surprisingly, normal kidney stiffness was found to exhibit
an inverse, statistically significant relationship with patient age
(p = 0.0003). Using pSWE, similar values were found in a small
series of normal volunteers with superficial kidneys, with a cortical
average stiffness of 15.4 ± 2.5 kPa [281]. The stiffness of the renal
medulla was found to be lower than the cortical stiffness [272],
except for in one study using pSWE [278].

11.3.2 Kidney stiffness for the assessment of renal pathology

In renal transplantation, serum creatinine levels and estimated
Glomerular Filtration Rate (eGFR) are poor predictors of the sever-
ity of histological lesions. A noninvasive test that could provide di-
agnosis and/or prognosis early on to avoid repeated biopsies and
to allow early targeted therapeutic intervention could improve pa-

tient management. Several studies report a correlation between
renal stiffness and fibrosis or renal function. In experimental mod-
els of glomerulosclerosis, the cortical stiffness was correlated to
the degree of renal dysfunction [263]. In humans, this correlation
remains highly variable in both native and transplanted kidneys.
Some authors reported a correlation between renal stiffness and
fibrosis or renal function with several techniques [270, 278, 282 –
285].

In other studies, the correlation between CKD stages and
kidney stiffness was negative, as shear wave velocity was found
to decrease with increasing stages of CKD [270, 286] or decreas-
ing eGFR [287, 288]. The cut-off values of renal stiffness proposed
by different studies could only predict advanced stages of CKD. In
the remaining studies, no correlation was found between renal
stiffness and the degree of CKD or interstitial fibrosis and tubular
atrophy, even in diabetic CKD [270, 272, 278, 288 – 294]. The re-
nal perfusion changes might impact renal stiffness and explain
some discrepancies between results [284], as intrarenal blood
flow is decreased with the progression of fibrosis. Thus, renal
blood flow decrease could be the cause of the decrease of
stiffness with the progression of CKD, and could have a bigger
influence on stiffness compared to renal fibrosis.

Additional preliminary applications include stiffness assess-
ment in the case of reflux nephropathy and tumor. In a study of
28 children, CKD degree increased SWE values mainly in the kid-
ney involved with vesicoureteral reflux (6.57 ± 0.96m/s) but also
in the contralateral kidney (4.09 ± 0.97m/s) while the normal
value in the pediatric population without renal disease was 3.13 ±
0.09m/s [295]. The increased stiffness even in the contralateral
kidney may result from increased glomerular filtration and
minimal fibrosis. Renal elastography might also play a role in the
detection and characterization of renal masses, improving the
identification of ill-defined lesions and providing information
about tumor stiffness [296].

11.4 Limitations and artifacts

Anatomical confounding factors include renal anisotropy, blood
perfusion and hydronephrosis. The effect of anisotropy has been
demonstrated in muscle and kidney elastography due to their
spatial organization [275, 276]. When shear wave propagation is
parallel to the renal tubules and interlobular arteries (and the
ultrasound beam is perpendicular to these structures), the veloc-
ity of the shear waves is increased [262]. Elasticity measurements
performed in the perpendicular direction to the long axis of the
pyramids exhibit higher values for all renal compartments. Renal
perfusion strongly affects renal elastography, with a drop in the
medulla ranging from 44 % to 72.7 % in renal artery occlusion,
and an increase over 500% in renal vein thrombosis [276]. Hydro-
nephrosis also results in a renal elasticity increase, with a correla-
tion between urinary tract pressure and cortical stiffness varying
from 119% to 137% between 5 and 40mmHg [276]. Additional
confounding factors include the type of technology and effect of
transmit frequency, attenuation of transmit pulse (deteriorating
signal-to-noise ratio). Using ARFI, the shear wave velocity was
reduced by 27% when the depth increased from 2 – 3 cm to 6 –
7 cm (2.95 ± 0.41m/s and 2.16 ± 0.61m/s, respectively) [277].
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Measurement depth influences the reproducibility of the method,
a lower reproducibility being found in patients with deep kidneys,
either native kidneys at a depth more than 4 cm or transplanted
kidneys.

RECOMMENDATION 14

No current recommendation can be given for the application

of ultrasound elastography in native kidneys (LoE 2b, GoR B)

(For 10, Abstain 0, Against 0).

RECOMMENDATION 15

Ultrasound renal elastography can be used as an additional

tool for the diagnosis of chronic allograft nephropathy

(LoE 2b, GoR B) (For 9, Abstain 1, Against 0).

12. Lymph nodes

12.1 Background

Noninvasive discrimination of malignant and benign lymph nodes
is important for further diagnostic and clinical decision-making.
Whereas contrast-enhanced ultrasound is not recommended for
the assessment of lymph nodes [297], elastography has a better
diagnostic performance [298], with evidence for the examination
of superficial lymph nodes and mediastinal lymph nodes. Superfi-
cial lymph nodes have been investigated by percutaneous US
using SE and SWE. Mediastinal lymph nodes have been investiga-
ted by endoscopic ultrasound using only SE.

12.2 Methods

SE is the method most frequently described, as the technique is
more widely available on most commercial systems, with more
consolidated evidence with a number of single research studies
and two meta-analyses published. More recently, SWE has been
evaluated with one meta-analysis published.

12.3 Clinical applications

12.3.1 Differential diagnosis of lymphadenopathy

Assessment of superficial lymph nodes using SE presents conflict-
ing data. Two recent meta-analyses demonstrated a high accuracy
in differentiating between benign and malignant lymph nodes.
The first meta-analysis included 578 patients with 936 lymph
nodes with a sensitivity of the scoring and SR measurements of
76% and 83%, respectively [299]. The second meta-analysis inclu-
ded 545 patients with 835 lymph nodes and indicated a sensitivity
of the elasticity scoring and SR measurements of 74 % and 88%,
with a specificity of 88% and 91%, respectively [300].

A meta-analysis including 481 patients with 647 lymph nodes
evaluated the role of SWE in superficial lymph nodes. SWE for the
discrimination of malignant and benign lymph nodes achieved a

sensitivity of 81% and specificity of 85% [301]. The latest meta-
analysis regarding the value of EUS elastography for the differen-
tiation of malignant and benign lymph nodes included 6 studies
with 368 patients and 431 lymph node, with SE demonstrating a
sensitivity of 88%, and a specificity of 85% [302]. Newer studies
including patients investigated by endobronchial ultrasound
(EBUS) had similar performance [303, 304].

12.3.2 Preoperative Assessment of Lymph Nodes in Patients
with Known Primary Cancer

With preoperative lymph node assessment for metastatic involve-
ment, no systematic review is available. Two studies investigated
SWE in the prediction of metastatic involvement from thyroid
cancer. A retrospective analysis [305] found that using the Mean
Elastic Modulus with a cut-off set to 29 kPa led to 66.67% sensitiv-
ity and 72.62% specificity, 78 % PPV, 64.71% NPV and 0.748 AUC,
whereas the combination with B-mode ultrasound lead to 98.04%
sensitivity, 45.45 % specificity, 73.53 % PPV, 93.75 % NPV and
0.811 AUROC. Other authors found that the best SWE parameter
for predicting metastatic involvement was the maximum value of
elasticity with the cut-off set to 40 kPa, leading to 80% sensitivity,
93.1 % specificity and 0.918 AUC [306].

12.4 Limitations and artifacts

Elastography is unlikely to be suitable for a differential diagnosis,
but is more likely to be useful for targeting malignant lymph
nodes for fine needle aspiration if multiple lymph nodes are pres-
ent [307]. It cannot be assumed that the entire lymph node is in-
volved in malignancy, but may range from a few undetectable
cells to involvement of a small area. Only a limited number of
studies with small sample sizes are available and invariably have a
selection bias [308, 309]. Somemalignant lymph nodes cannot be
discriminated by tissue stiffness alone, as is the case with the
lymph nodes of lymphoma [310]. There is no standardization of
the technique particularly in SE, making study comparisons diffi-
cult [311]. Often with lymph node imaging in EUS, there is a rela-
tive depletion of surrounding tissue as a normal reference for SR
calculation, including the gastrointestinal wall advocated as the
standard comparison for tissue reference [309].

RECOMMENDATION 16

High-frequency transcutaneous and endoscopic ultrasound

elastography can be used as additional tools for the differen-

tiation between benign and malignant lymph nodes (LoE 2a

GoR B) (For 20, Abstain 0, Against 0).

RECOMMENDATION 17

Ultrasound elastography can be used for identifying the most

suspicious lymph nodes and/or suspicious areas within the

lymph node to be targeted for sampling (LoE 5, GoR D)

(For 19, Abstain 1, Against 0).
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13. MusculoSkeletal

13.1 Background

In comparison with the previous guidelines, there has been an in-
crease in studies regarding musculoskeletal (MSK) elastography
[2].

13.2 Methods

Published data concerning the use of SE, ARFI imaging, and SWE
for elastographic evaluation of the MSK structures, especially for
tendons, muscles and nerves, are available.

13.3 Clinical applications

13.3.1 Tendons

In SE the healthy Achilles tendon is mostly rigid (86.7 – 93% of the
tendon has high stiffness) [312, 313] and there is an increase in
stiffness with age [314]. Using SWE, different values of shear
wave velocity or elastic modulus were obtained depending on
the machine used, tendon position, or plane of imaging [113,
315, 316]. In Achilles tendinopathy the SR (comparing tendon
with Kager’s fat) is higher and the tendon becomes less stiff
[317]. SE proved to be superior to B-mode ultrasound (sensitivity
99%, specificity 78%, accuracy 95%) [318], underlining the ability
of SE to detect pathology before the appearance of the B-mode
ultrasound morphologic changes [319, 320]. No differences be-
tween athletes and controls nor between the dominant and non-
dominant leg were found in SE evaluation of the patellar tendon
[321]. With age, a significant decrease in shear wave velocity val-
ues was detected, with SWE having the capacity to detect aging
tendons before morphologic abnormalities were observed on
B-mode ultrasound [322, 323].

For lateral epicondylitis the addition of SE to B-mode ultra-
sound findings improves the sensitivity for detecting tendon pa-
thology [324, 325]. Using B-mode ultrasound in combination
with SE resulted in a better correlation with histologic results. In
the rotator cuff, SE can detect small partial tears of the supraspi-
natus tendon [326]. In patients with tendinopathy, a significant
decrease in the shear wave velocity of the supraspinatus muscle
was observed [327]. Currently, no observations monitoring
tendon healing are available in longitudinal studies.

13.3.2 Muscle

Using SE, the normal relaxed muscle appears as an inhomoge-
neous mosaic of intermediate or increased stiffness with scat-
tered less stiff and stiffer areas, especially at the boundaries of
the muscle [328, 329]. In SWE the normal relaxed muscle has a
lower shear wave velocity (which increases during contraction)
and the boundary fascia or aponeurosis show intermediate shear
wave velocity [330].

Physiological factors (age, sex, muscle performance, fatigue,
or training) and pathological changes (trauma, degeneration, or
neuromuscular disease) influence muscle elasticity [331 – 337].
Normal and abnormal ranges of shear wave velocity of various

muscles are available [327, 333, 336, 338] but the results are
limited, without establishing any reference values.

SWE for the evaluation of muscle stiffness in various neurologic
conditions (Parkinson disease, chronic stroke, cerebral palsy, mul-
tiple sclerosis or Duchenne dystrophy) is a reliable quantitative
imaging technique for diagnosis, treatment decisions and follow-
up and may be an alternative to electromyography [333, 338 –
342].

In inflammatory myopathies SE demonstrated that the
involved muscles become stiffer, and significant correlations with
histological findings were obtained [328, 343]. Acute muscle and
fascial tears show a lower shear wave velocity [330], but no
prospective studies have been published.

13.3.3 Ligaments and fascia

Using SWE in patients with adhesive capsulitis, the coracohumeral
ligament proved to be stiffer in the symptomatic shoulder [344].
The increased stiffness of the transverse carpal ligament evaluat-
ed on SE may be one of the causes for carpal tunnel syndrome
[345]. The plantar fascia becomes less stiff with age and in
subjects with plantar fasciitis abnormality is seen when using
ARFI imaging (pixel intensity), SE or SWE even in the absence of
pathological findings on B-ode ultrasound examination [346 –
350], suggesting a role of elastography in the diagnosis of early
stages of plantar fasciitis.

13.3.4 Nerves

Median nerve strain is significantly lower in patients with carpal
tunnel syndrome than in controls [351], and the perineural area
surrounding the median nerve is stiffer than in healthy volunteers
[352]. The SE can be used to follow up the median nerve recover-
ing after carpal tunnel release [353] or after local corticosteroid
injection [354] but does not have the capability to categorize the
severity. The combined use of B-mode ultrasound and SE has been
suggested [355].

Using pSWE the shear wave velocity of the median nerve was
3.857m/s in patients with carpal tunnel syndrome and 2.542m/s
in the control group (p < 0.05) [356]. Using 2D-SWE the mean
shear modulus of the median nerve was 66.7 kPa in patients and
32.0 kPa in the control group (p < 0.001) [357]. Both methods
have high sensitivity and specificity for carpal tunnel syndrome
diagnosis and are highly reproducible. The increased stiffness
was attributed to nerve fibrosis or edema.

The elasticity of the tibial nerve in diabetic patients is reduced
compared with a control group and decreased further after devel-
oping diabetic peripheral neuropathy [358 – 360].

The joints and limb position and the patients’ age should be
taken into consideration during a nerve ultrasound examination
[361].

13.4 Practical points

SE is an operator-dependent technique, with a recommendation
to record several (at least 3) compression-relaxation cycles as
cine-loops and then select the best elastograms for evaluation.
The examination transducer should be perpendicular to the tissue
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to avoid anisotropy, as the B-mode ultrasound appearance influ-
ences the quality of the elastogram.

The use of standoff devices for SE of the superficial structures
does not influence the elastogram (a minimum 3mm distance be-
tween transducer and lesion being necessary) [362], but the in-
clusion of gel within the region of interest should be avoided
(may mask minimal differences in tendon stiffness) [329].

The SWE examination of muscles and tendons should be
performed with the lightest transducer pressure. The dimension
of the region of interest does not influence the mean elastic mod-
ulus [363].

The transducer must be oriented longitudinally to the muscle
fibers in order to achieve accurate and reliable SWE measure-
ments. The shear waves propagate faster in contracted tendons
and muscles and along the long axis of tendons [330]. The
ligaments should be examined in the same position as the
corresponding joints [344].

13.5 Limitations and artifacts

When a solid structure is delimited by an incompressible shell, SE
analysis of the internal structure is limited (the eggshell effect)
[364]. Cystic masses characteristically have a mosaic of all levels
of stiffness. Low stiffness lines may appear at the interfaces be-
tween tissues (due to tissue shifting), around calcifications, be-
hind bone or at the superficial edge of a homogeneous lesion.
Fluctuant changes at the borders of the Achilles tendon in an axial
elastogram can be seen due to varying contact with the skin
[365].

A limitation of SWE is depth of penetration. Superficial struc-
tures may be better visualized by applying a 5mm layer of cou-
pling ultrasound gel as standoff. SWE examination is influenced
by the transducer pressure and angle, and the shear modulus de-
pends on the orientation of the transducer relative to the exam-
ined structures [330, 366].

RECOMMENDATION 18

Ultrasound elastography can be used as a supplementary tool

to increase confidence in diagnosing tendinopathy, particular-

ly for Achilles tendinopathy, for evaluating muscle stiffness

and for plantar fasciitis (LoE 2b GoR B) (For 19, Abstain 1,

Against 0).

RECOMMENDATION 19

Ultrasound elastography can be used for the diagnosis and

follow-up of carpal tunnel syndrome and diabetic peripheral

neuropathy (LoE 2b, GoR B) (For 19, Abstain 1, Against 0).

14. Testis

14.1 Background

Traditionally the presence of a focal lesion in the testis was addres-
sed by removing the testis for histological examination, on the
premise that nearly all of these lesions are malignant. However,
access to modern ultrasound technology has rendered this ap-
proach obsolete, and as many as 80% of incidentally discovered
lesions are benign [367]. The use of newer contrast-enhanced
ultrasound and elastography techniques [368], combined as mul-
tiparametric ultrasound [369], has resulted in a more cautious ap-
proach to incidental focal testicular lesions [370]. The use of elas-
tography to assess the stiffness of abnormal areas of the testis to
ascertain stiffness as a sign of underlying malignancy is an attrac-
tive proposition to add to the overall multiparametric assessment.

14.2 Methods

14.2.1 Strain elastography

SE has been the most employed technique for the assessment of
testicular lesions [371 – 375]. Early studies, predominantly retro-
spective, have commented on the possibility of differentiating
malignant from benign lesions with certainty using SE and SR.
However, these findings have not been confirmed in recent stud-
ies, with specificities between 25.0 % and 37.5% in differentiating
benign from malignant lesions [375 – 377]. A number of case ser-
ies detailing the use of SE and SR (some in combination with con-
trast-enhanced ultrasound) have described the findings in Leydig
cell tumors [378], epidermoid cysts, hematoma, lymphoma, focal
infarction, capillary hemangioma, adrenal rest cells [379 – 384]
and in extra-testicular lesions [385], without comparison between
the findings of these different lesions.

14.2.2 SWE

There is limited information regarding the use of SWE in the eval-
uation of testicular lesions. Investigation of the role of SWE in the
overall assessment of background parenchyma has suggested
that values may be elevated in the case of testicular microlithiasis
[386], infertility [387], undescended testis [388]. It also has the
potential to differentiate seminomas from non-seminomatous
lesions [389] and has been evaluated in burnt-out tumors [390].
No prospective study reporting the differences in SWE in focal tes-
ticular lesions has been published.

14.3 Clinical applications

The use of all forms of elastography in the assessment of focal tes-
ticular lesions is promising, with tissue stiffness confirmed with
both SE and SWE techniques, but with overlap in findings between
benign and malignant neoplasms. The current status would allow
elastography to be an adjunct to the overall ultrasound examina-
tion rather than a standalone technique.

14.4 Limitations and artifacts

For testicular lesions, the values obtained for SWE vary between
different machines and are not interchangeable [391]. The prob-
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lems associated with the areas of fibrosis adjacent to the tunica
albuginea hamper the assessment of focal lesions adjacent to
this region [392]. Measurements using SWE between the center
and peripheral zones differ and the point of measurement
requires standardization [393, 394].

RECOMMENDATION 20

Ultrasound elastography for the evaluation of focal testicular

lesions can only be recommended in conjunction with other

ultrasound techniques, as there is overlap between benign

and malignant neoplasms (LoE 3A GoR B) (For 19, Abstain 1,

Against 0).

15. Vascular

15.1 Background

It is well established that ageing and atherosclerotic disease
increases arterial stiffness [395]. Elastography biomarkers are
emerging as potential indicators for diseases such as stroke,
hypertension, diabetes mellitus and cardiovascular disease, and
may provide additional information to support clinical decision-
making.

15.2 Methods

The majority of studies are based on SE. Early studies used intra-
vascular ultrasound and more recent studies have focused on
noninvasive techniques including SWE. These techniques have
been compared with alternative imaging techniques, histology,
clinical outcome measures and/or in experimental phantoms and
simulations.

15.3 Clinical applications

15.3.1 Strain elastography

Plaque characterization is a challenging, clinically important appli-
cation for which evidence of clinical benefit is growing [396].
Evidence from animal and human studies [397 – 403] typically
associates vulnerable plaque with regions of high strain. The
potential to detect and age thrombus has been demonstrated in
animal models [404, 405]. A clinical application to differentiate
acute from chronic deep vein thrombosis (DVT) has been demon-
strated in humans [406 – 408], and a systematic review concluded
that elastography imaging is a feasible adjunct to current first-line
imaging for DVT [409]. However, at least one recent study was not
able to differentiate acute DVT from subacute DVT [410]. Other
potential vascular applications include cardiac, abdominal aorta
and the use of elastography biomarkers for disease [411 – 414].

15.3.2 SWE

The feasibility of quantifying Young’s modulus in arteries has been
demonstrated in human [415], ex-vivo animal [416, 417] and
phantom [418– 420] studies. Identification of the vulnerable car-

otid plaque is emerging as a promising clinical application. Phan-
tom studies have demonstrated the feasibility of Young’s modulus
estimates but highlight errors due to the requirement for a differ-
ent wave propagation model than used by current commercial
systems [418 – 421]. Nevertheless, human studies show good
reproducibility and potential clinical benefit [422 – 426], with evi-
dence that Young’s modulus of carotid plaque correlates with
qualitative (Gray-Weale scale) appearance [422, 425, 426] and
quantitative (grayscale median) B-mode ultrasound measure-
ments [422, 426], and helps to provide improved diagnostic per-
formance of carotid plaque vulnerability [422, 426]. Studies found
a lower mean Young’s modulus for vulnerable plaque, although
values differ (50 kPa vs. 79 kPa [426]; 62 kPa vs. 88 kPa [422];
81 kPa vs. 115 kPa [425]). Evidence is limited for other vascular
applications such as cardiac [427 – 429] and DVT [430, 431].

15.4 Limitations and artifacts

Vascular imaging is challenging due to the small heterogeneous
tissue size, the dynamic environment resulting from pulsatile
blood flow, thin vessel walls, non-linear tissue elasticity and shear
wave propagation model assumptions which may not be valid due
to the potential for Lamb wave propagation in vessel walls [415,
418]. Studies should report the shear wave velocity or calculation
used to convert velocity to Young’s modulus as future scanners
may implement different models of wave propagation. Vascular
applications are promising, especially for the assessment of
carotid plaque, where larger, multicenter studies are required to
validate initial findings, establish cut-off values and optimize
methodologies.

RECOMMENDATION 21

Vascular ultrasound elastography is an area of active research.

However, it cannot currently be recommended for clinical

decision-making (LoE 5, GoR C) (For 20, Abstain 0, Against 0).

16. Intraoperative

16.1 Background

All surgical disciplines make use of preoperative imaging to visua-
lize a pathology for improved surgical planning.

16.2 Methods

Improved ultrasound technology has resulted in high-frequency
small transducers with better resolution including 3D ultrasound,
contrast-enhanced ultrasound and elastography.

16.3 Clinical applications

The utility of intraoperative ultrasound is less obvious. The advan-
tages include intraoperative navigation without ionizing radiation
exposure or relevant workflow interruption, assessment of the ex-
tent of resection, and organ shift monitoring and compensation
(most important for the brain). Disadvantages for ultrasound elas-
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tography include organ deformity intraoperatively due to a num-
ber of factors including tumor resection sequelae and post-inter-
ventional swelling. The use of intraoperative elastography has
been reported for the liver [8, 9, 432 – 435], brain [436 – 443],
pancreas [115, 185], prostate [444], lung [445] and other organs
[446].

RECOMMENDATION 22

Intraoperative ultrasound elastography is an area of active

research. However, it cannot be currently recommended for

clinical decision-making (LoE 5, GoR C) (For 20, Abstain 0,

Against 0).
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