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Abstract: Background and Objective: Enterococci are typically found in a healthy human gastroin-
testinal tract but can cause severe infections in immunocompromised patients. Such infections are
treated with antibiotics. This study addresses the rising concern of antimicrobial resistance (AMR) in
Enterococci, focusing on the prevalence of vancomycin-resistant enterococcus (VRE) strains. Materials
and Methods: The pilot study involved 140 Enterococci isolates collected between 2021 and 2022 from
two multidisciplinary hospitals (with and without local therapeutic drug monitoring protocol of
vancomycin) in Latvia. Microbiological assays and whole genome sequencing were used. AMR
gene prevalence with resistance profiles were determined and the genetic relationship and outbreak
evaluation were made by applying core genome multi-locus sequence typing (cgMLST). Results:
The acquired genes and mutations were responsible for resistance against 10 antimicrobial classes,
including 25.0% of isolates expressing resistance to vancomycin, predominantly of the vanB type.
Genetic diversity among E. faecalis and E. faecium isolates was observed and seven potential outbreak
clusters were identified, three of them containing sequence types ST6, ST78 and ST80. The preva-
lence of vancomycin resistance was highest in the hospital without a therapeutic drug-monitoring
protocol and in E. faecium. Notably, a case of linezolid resistance due to a mutation was documented.
Conclusions: The study illustrates the concerning prevalence of multidrug-resistant Enterococci in
Latvian hospitals, showcasing the rather widespread occurrence of vancomycin-resistant strains.
This highlights the urgency of implementing efficient infection control mechanisms and the need for
continuous VRE surveillance in Latvia to define the scope and pattern of the problem, influencing
clinical decision making and planning further preventative measures.
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1. Introduction

Enterococcus is a large genus of Gram-positive, facultative anaerobic cocci, which can be
isolated from animals, birds, plants and various environmental sources like soil and water.
In humans and animals, enterococci are commonly found as commensal microorganisms in
the gastrointestinal tract. Enterococci are also known to be capable of spreading rapidly and
adapting quickly to unfavourable and changing environmental conditions. Mechanisms
regarding adaptation, whether inherent or gained, can manifest at either an individual
or population level. This rapid rate of adaptation is possible mostly due to acquired
resistance through mutations or the acquisition of foreign, valuable genetic material [1].
The adaptation of enterococci to thrive in challenging environmental conditions has played
a major role in their increased prevalence after the introduction of antimicrobial therapy.
The ability of bacteria to withstand antimicrobials can be influenced by both internal and
external factors, with adaptation playing an important role [2]. Due to this adaptation,
enterococci have emerged as significant nosocomial opportunistic pathogens, responsible
for causing bacteraemia, endocarditis, urinary tract infections, wound infections, or intra-
abdominal infections, and are one of the most commonly isolated pathogens in hospital
settings [1,3]. The adaptability of Enterococci together with their potential pathogenicity
creates a considerable challenge for the controlling of resistant bacteria from spreading
within a hospital environment [4,5].

Two of the most common Enterococcal species causing bacterial infections are E. faecalis
and E. faecium. Clinically detected E. faecalis and E. faecium species usually have some innate
resistance to antibiotics. Enterococci can have innate resistance against aminoglycosides,
macrolides, β-lactams and lincosamides (E. faecalis), meaning they are commonly found to
be multidrug resistant [1,6,7].

In cases of severe infections where first- and second-line antibiotics are not effi-
cient, reserve antibiotics are administered to treat an infection. One such example is
a vancomycin–glycopeptide class drug, discovered in the middle of the 20th century, but
not used widely until the 1980s [8]. Soon after the introduction of vancomycin, microbial
resistance was detected, and within the last decade, it has been a serious matter for concern,
due to its increasing resistance ever since, especially in the two most common species of
Enterococcus [9]. The genomic flexibility of vancomycin-resistant enterococci has resulted
in the evolution of a specific clade of E. faecium within hospitals, exhibiting resistance to
multiple antibiotics [3].

As vancomycin-resistant Enterococcus is a global health concern, it is important to
keep monitoring the resistance rate of such strains and provide valuable information to
competent authorities for the surveillance of public health. In all cases of antibiotic-resistant
bacteria, it is crucial to determine a pattern of antibacterial resistance, emerging trends,
prevalence and scope of the problem, to implement controlling mechanisms accordingly,
adjust antibacterial therapy and design further preventative measures to contain the spread
of the pathogenic bacteria; therefore, by decreasing both, the risk of infections and further
spread of antibiotic resistance is limited.

The aim of our pilot study was to detect all species of Enterococci obtained from the
microbiological assays in two multidisciplinary hospitals—“A”, a hospital without a local
therapeutic drug monitoring (TDM) protocol of vancomycin and “B”, a hospital with a
local vancomycin TDM protocol in Latvia—to evaluate the genetic background of each
Enterococcus isolates by applying whole genome sequencing, to further analyse the data of
all antimicrobial genes, predictable phenotypic antibacterial resistance and the prevalence
of antimicrobial resistance (AMR) genes in both hospitals. A core genome multi-locus
sequence typing (cgMLST) was applied to evaluate possible outbreaks and determine
sequence types of the two most common Enterococcus bacteria found in hospital settings—E.
faecalis and E. faecium.

The two hospitals were selected based on the fact that both have multidisciplinary
profiles and an already established relation (the exchange rate of patients between both
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hospitals according to the general plan of the structure of the healthcare system in the
Republic of Latvia).

2. Materials and Methods
2.1. Samples and Sampling

Our pilot study investigated the genetic variations using a random sampling approach.
We selected individuals from two hospitals—A and B—without considering their popula-
tion sizes or number of hospital beds. This method ensured everyone had an equal chance
of being chosen, which is essential for random sampling.

One hundred and forty-four (144) samples from patients in two hospitals in Latvia (for
the purpose of anonymity referred to as “A” and “B”), were collected and analysed using a
random sampling approach from 2021 to 2022. Both are tertiary-level hospitals. Four of the
samples were later eliminated because of inferior quality for genetic testing or contamina-
tion. Since the year 2018, hospital “B” additionally uses internally approved vancomycin
TDM protocols in their clinical practice. Therapeutic drug monitoring is the process of
measuring the concentration of specific medicines to maintain a constant concentration
in plasma, and then adjusting the therapy—both doses and dosage intervals—based on
the results of the plasma concentration. As a part of this study, Enterococci were more
commonly isolated from blood, faeces, urine or wounds. The study was approved by the
Ethics Committee of Riga Stradins University, 16 Dzirciema Str., LV-1007, Riga, Latvia,
approval no. 6-1/09/11, 10 September 2020.

2.2. Microbiological Testing of Samples

In hospital “A”, laboratory-isolated microorganisms were cultivated on 5% blood
agar plates (Columbia Blood Agar Base, HiMedia, Laboratories, Maharashtra, India), sup-
plemented with sheep blood, and defibrinated (TCS Biosciences Ltd., Buckingham, UK).
Microorganism identification was performed using Matrix Assisted Laser Desorption Ion-
ization Time-of-Flight (MALDI-TOF) Vitek MS (bioMérieux, Craponne, France) and an
antimicrobial susceptibility test to determine the antimicrobial susceptibility was performed
using disk diffusion method (Liofilchem, Roseto degli Abruzzi, Italy) and interpreted ac-
cording to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [10]
criteria at the time of testing. Microorganism identification and an antimicrobial susceptibil-
ity test to determine the antimicrobial susceptibility were performed using Vitek-2 system
(bioMérieux, France) by applying GP card for identification and AST 643 susceptibility
cards for phenotypic susceptibility. Vitek-2 analyser automated susceptibility testing was
performed with systems validated for use with European breakpoints, according to the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) [10] criteria at the
time of testing.

One sample was retested for antibiotic susceptibility with broth microdilution method
to confirm the results of whole genome sequencing.

2.3. Extraction of DNA and Whole-Genome Sequencing (WGS)

Before sequencing, microorganisms were again identified using MALDI-TOF (Bruker,
Ettlingen, Germany) mass spectrometer. DNA of isolates was extracted using NucleoSpin
Tissue kit (Macherey-Nagel, Düren, Germany) adding additional lysozyme enzyme for
breaking down the cell wall, and then following the standard protocol nr.5. The purity
of the samples was assessed using a NanoDrop spectrophotometer and the quantity was
measured using a Qubit fluorometer (both ThermoFisher Scientific, Landsmeer, The Nether-
lands). Libraries for WGS were prepared with Illumina DNA prep (Illumina, San Diego, CA,
USA) following the provided instructions. Sample quality before pooling was assessed with
the gel capillary electrophoresis (QIAxcel Advanced Instrument, QIAGEN, Venlo, Limburg,
The Netherlands) using a high-resolution cartridge and a 50–1500 bp size marker. Whole
genome sequencing was performed with the next-generation Illumina MiSeq sequencer
(Illumina, Sand Diega, CA, USA).
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2.4. Genome Assembly, Detection of Resistance Genes and Core Genome Sequence Typing

Raw data files were uploaded, genome assembled and data analysed using pub-
licly available sources in Galaxy platform [11] and CGE website (Center for Genomic
Epidemiology) [12] using most recent databases at the time. The quality of the raw files
was assessed using FastQC (Galaxy Version 0.72) and trimmed using Trimmomatic tool
(Galaxy Version 0.38.1) with the following settings: LEADING:17 TRAILING:0 SLID-
INGWINDOW:4:20 MINLEN:30, and then assembled using SPAdes or Shovill with esti-
mated genome size set to 2.5–3.5 Mb. Afterwards, QUAST was used to assess the quality
of the assemblies. During this stage, four samples were eliminated due to contamina-
tion or poor quality. Within Galaxy platform, genome analysis was conducted using
“staramr” program (version 0.9.1) and the following databases: ResFinder (24 May 2022,
v072621), PointFinder (1 February 2021, v072621.1) and PlasmidFinder (https://cge.food.
dtu.dk/services/PlasmidFinder/, 29 November 2021). Gene location on mobile genetic
elements and information regarding linezolid resistance was assessed through CGE web-
site using Mobile Genetic Elements (MGE) (software version: v1.0.3 (9 October 2020),
database version: v1.0.2 (9 June 2020) and LRE-Finder (version 1.0) accessed in March
2023. Core genome multilocus sequence typing (cgMLST) with Ridom SeqSphere+ pro-
gramme (Ridom, Muenster, Germany) was also performed to evaluate transmission paths
and monitor occurrence of the outbreaks [13]. For easier analysis and outbreak investi-
gation of data created with cgMLST, it was displayed and analysed with freely available
minimum-spanning tree visualization program “GrapeTree” using the MSTreeV2 algorithm
(https://achtman-lab.github.io/GrapeTree/MSTree_holder.html accessed on 21 January
2024) [14].

All information regarding sample names, resistance genes, sequence types, muta-
tions, isolation sources, hospital and year of isolation can be found in the table under
Supplementary Material section.

2.5. Statistical Analysis

To see if vancomycin resistance significantly differs between the hospitals or species,
G-test from package DescTools (version 0.99.54) in R (version 4.3.2) R Core Team (2023)
was used.

3. Results
3.1. Antimicrobial Resistance Genes in Enterococcus Isolates

Four of the isolated samples were eliminated due to inferior quality for genetic testing
or contamination. Within the samples collected from both hospitals, five different species
of Enterococci were detected: E. faecalis (n = 82), E. faecium (n = 55), E. gallinarum (n = 1),
E. avium (n = 1) and E. durans (n = 1). 79.3% (65/82) of E. faecalis isolates, 100% (55/55) of
E. faecium isolates and the only isolate of E. avium were multiresistant. A total of 20 antimi-
crobial genes were identified according to the ResFinder database on WGS data (Table 1).
These different antibiotic resistance genes determine resistance against seven different
classes of antibacterial agents: aminoglycosides, macrolides, lincosamides, glycopeptides,
tetracyclines, trimethoprimes and chloramphenicols. In addition, the stress tolerance gene
clpL was frequently observed.

Within E. faecalis isolates, the clpL gene was found in seventeen samples. Fifteen of
these genes were located in insertion sequences (IS). Thirteen were found in ISLla3, one
in ISLgar3 and another in ISEfm2. The cIpL gene was also detected in seven samples of
E. faecium, and in four cases it was located on one sequence read (contig) with plasmid
replicon rep1, leading to the belief that it is in the plasmid DNA [15].

https://cge.food.dtu.dk/services/PlasmidFinder/
https://cge.food.dtu.dk/services/PlasmidFinder/
https://achtman-lab.github.io/GrapeTree/MSTree_holder.html
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Table 1. Resistance genes and antibiotic classes identified in all analysed Enterococcus isolates
(n = 140).

Resistance Gene Antibiotic Class Resistance Gene Antibiotic Class

aac(6′)-aph(2′′)

Aminoglycosides

cat(pC221) Chloramphenicols

aac(6′)-Ii dfrG Trimethoprim

aac(6′)-Iih lnuB

Lincosamidesant(6)-Ia lsaA

ant(9)-Ia lsaE

aph(3′)-III tetL Tetracyclines
ermA

Macrolides

tetM

ermB vanC1XY

GlycopeptidesermT VanHAX

msrC VanHBX

Mutations in gyrA and parC genes with a substitution of one nucleotide in the 83rd
and 80th or 87th and 80th (one case) positions were also noticed. This type of mutation in-
duces fluoroquinolone antibiotic resistance. Many cases of mutations in penicillin-binding
proteins-5 (PBP-5) in E. faecium were also noticed, which leads to penicillin (ampicillin)
resistance. One case of mutation in 23S rRNA (G2576T) leading to linezolid resistance (oxa-
zolidinone class) was also detected. Altogether, Enterococci isolates displayed resistance
against nine different antibiotic classes.

3.2. Resistance Genes of E. faecalis

Isolates of E. faecalis carried resistance genes and mutations against seven different
classes of antimicrobial agents: lincosamides (100%), tetracyclines (78.0%), aminoglyco-
sides (54.9%), macrolides (47.6%), fluoroquinolones (47.6%), amphenicols (22.0%) and
glycopeptides (7.3%) (Figure 1).
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The clpL gene was observed in 17 out of 82 cases (20.7%). Genetic resistance against
lincosamide class drugs, such as clindamycin, was induced by genes lsaA, lsaE and lnuB;
furthermore, genes tetM and tetL were responsible for inducing resistance against tetracyclines.

3.3. Resistance Genes of E. faecium

Genes and mutations of E. faecium isolates exhibited resistance against nine classes of
antimicrobial agents—aminoglycosides (100%), macrolides (100%), penicillin (90.9%), fluo-
roquinolones (85.5%), tetracyclines (70.9%), glycopeptides (49.1%), trimethoprim (32.7%),
lacosamide (12.7%) and oxazolidinones (1.8%). Seven of the fifty-five samples also con-
tained the clpL gene (12.7%) (Figure 2).
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Aminoglycoside resistance in strains of E. faecium was determined by four genes—aac6′-Ii,
aac6′-aph2′′, aph3′-III and ant6-Ia—and macrolide resistance was determined by msrC, ermB
and ermT.

3.4. Resistance Genes in E. gallinarum, E. durans and E. avium

In samples of E. gallinarum, only a resistance against vancomycin (glycopeptide class
drug) was detected. Strains of E. durans were found to contain the clpL gene and have
aminoglycoside resistance, whereas E. avium was discovered to be multiresistant against
aminoglycosides, amphenicols, trimethoprims, macrolides, tetracyclines and glycopeptides.

3.5. Incidence of Vancomycin Resistance

In total, 35 of 140 (25.0%) analysed samples were genetically vancomycin-resistant.
Specimens of Enterococci collected at hospital “A” showed vancomycin resistance in 57.1%
(n = 24/42) of the cases, whilst in strains isolated from hospital “B” VRE was detected in
11.2% (n = 11/98) of all specimens, which is 5.1 times less in comparison to hospital “A”
(p-value < 0.001) (plot is on the left of Figure 3). The incidence of VRE between two of the
most commonly isolated strains showed significant result differences; 7.3% (6/82) of E.
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faecalis in comparison to 49.1% (27/55) of E. faecium samples were vancomycin-resistant
(p-value < 0.001) (plot is on the right of Figure 3).
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resistance in samples from two different hospitals (A and B). Hospital A has significantly higher
ratio of vancomycin-resistant bacteria (p-value < 0.001). Bar plot B depicts number of positive and
negative cases of bacteria tested for vancomycin resistance in two Enterococcus species (E. faecalis and
E. faecium). E. faecium is significantly more vancomycin-resistant than E. faecalis (p-value < 0.001).

The vanB type was the dominant VRE type, being detected in 25 isolates out of 35
(71.4%). One vancomycin-resistant vanC type was also detected in the E. gallinarum isolate.

Both vanA and vanB types contained the regulatory gene vanRS and resistance genes
vanHAX, vanHBX and vanY, as well as vanZ (detected only in vanA types, with the exception
of one case found in E. avium isolates) and vanIW (only vanB types). In 16 vanB ligase-type
resistant samples, resistance genes were located in the Tn1549 transposon.

All vancomycin-resistant samples were multiresistant, containing gyrA and parC
mutations. None of the VRE specimens analysed were detected to carry the clpL stress
tolerance gene.

3.6. Core Genome Analysis

In this stage, only two of the most common species were analysed—E. faecalis and E.
faecium. A relatively large diversity of sequence types (ST) was observed, with E. faecalis
belonging to 20 different types, the most common being ST6 (n = 20), ST774 (n = 13) and
ST179 (n = 10), whilst E. faecium belongs to 14 sequence types, with the most common
being ST80 (n = 17), ST17 (n = 10) and ST78 (n = 9). Interestingly, almost half (46.2%) of the
E. faecalis with ST774 had lost their vancomycin resistance genes by the time the isolates
were sequenced.

3.7. Analysis of E. faecalis

In order to evaluate the genetic relatedness of E. faecalis isolates specifically, it is
recommended to examine strains with 0–7 allelic differences to call them related [16].
Figure 4 shows that high genetic similarity between four and more isolates can be observed
in two clusters (marked in grey), which could indicate a potential outbreak. In one case
there are seven related samples and in the other case—four. All of the isolates in these
clusters are ST6 and multiresistant; however, vancomycin resistance was not observed in
this cluster. This Enterococcus outbreak is mainly local to hospital “B” in the year 2022,
except for one isolate which was obtained from hospital ”A” in 2021. This might indicate a
transmission of pathogenic bacteria between the hospitals.
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Figure 4. A minimum spanning tree of E. faecalis isolates (n = 82). Isolates with 0–7 allelic differences
are collapsed into larger nodes. The count of allelic differences between the most similar genotypes is
indicated with numbers on the connecting branches. For better visibility, branch lengths are shown in
a logarithmic scale. The number on each node represents its sequence type. It was not possible to
determine the sequence type of one isolate; therefore, it is indicated as ST0. Grey circles show possible
outbreaks of multiresistant but vancomycin-susceptible isolates belonging to ST6. The number of
isolates obtained from each hospital is shown in square brackets.

3.8. Analysis of E. faecium

Fifty-one of fifty-five E. faecium isolates belonged to clonal complex 17 (CC 17), which
represents bacteria acquired in hospitals and have an evolutionary split from commensal
bacteria. In order to evaluate closely related E. faecium strains, it is advised to focus on cases
with 0–20 allelic differences between isolates [17].

In Figure 5, five clusters of related isolates (four and more highly similar isolates)
were detected and might indicate an outbreak, with three of the clusters also containing
VRE. VanB type isolate clusters were observed on two separate occasions, with six isolates
belonging to ST78 and eight isolates belonging to ST80, both marked in orange (Figure 5).
ST80 isolates in this cluster belonged to the complex type (CT 2579). It is possible to observe
that vanB type resistant Enterococci are mostly dominant within hospital “A” (dark purple
spheres). All these samples were collected in 2021.

One possible case of an outbreak with vanA type resistant Enterococci (marked yellow),
was observed in hospital “B”. These specific samples belonged to ST80 (CT2046) and
were isolated from urine in 2022. The other two related clusters (grey) were vancomycin
susceptible. All of the outbreaks included multiresistant isolates.
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Figure 5. A minimum spanning tree of E. faecium isolates (n = 55). Isolates with up to 20 allelic
differences are collapsed into larger nodes. The count of allelic differences between the most similar
genotypes is indicated with numbers on the connecting branches. For better visibility, branch lengths
are shown in a logarithmic scale. The number on each node represents its sequence type. The coloured
circles indicate possible outbreaks: Grey—related vancomycin susceptible isolates; Yellow—related
vanA type isolates in hospital “B”; Orange—related vanB type isolates. The number of isolates
obtained from each hospital is shown in square brackets.

4. Discussion

Among all isolated Enterococcus samples (n = 140), E. faecalis (n = 82) and E. faecium
(n = 55) were the most common species obtained in both hospitals and confirm the state-
ment previously published in the scientific literature [6].

Resistant bacteria can become widespread in the community, if compensatory genetic
content is accumulated or resistance gene expression becomes fully inducible upon an-
tibiotic exposure, thus emphasizing the importance of controlling measures to limit the
emergence of antimicrobial resistance [18]. The 140 Enterococcus isolates collected from
the two hospitals revealed that multidrug-resistant Enterococci are a rather significant
threat to the hospitals in Latvia. The majority of clinically isolated samples of Enteroccoci
were multiresistant, especially isolates of E. faecium, which were resistant to at least two
antibiotic classes. We discovered that lincosamide class antibiotics are no longer efficient in
the treatment of infections caused by E. faecalis, and demonstrated that aminoglycoside,
macrolide and, in most of the cases, penicillin class antibiotics are ineffective against strains
of E. faecium.

In our study, we discovered that antimicrobial resistance was induced not only by
resistance genes but also by mutations. We observed resistance to three antibiotic classes
induced by mutations—fluoroquinolones, penicillins and oxazolidinones. One such muta-
tion was gyrA and parC protein mutations with substitution of one nucleotide in the 83rd
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and 80th or 87th and 80th (one case) positions in the two mentioned subunit genes. Genes
gyrA and parC encode the production of enzymes—DNA gyrase (gyrA) and topoisomerase
IV (parC)—which are essential in the transcription and replication process of DNA and are
molecular targets of fluoroquinolone class antibiotics (e.g., ciprofloxacin) [19].

In Gram-positive bacteria, the cell wall is composed of many interconnected layers,
which protect bacteria from external hazardous environmental factors. To ensure transgly-
cosylation and transpeptidation, enzymes of the transpeptidase class are required. These
are also known as penicillin-binding proteins (PBP). In this study, multiple penicillin-
binding protein–5 (PBP-5) mutations were observed in isolates of E. faecium. If mutations
are found in this protein, it might indicate a higher-level resistance to penicillin drugs, such
as ampicillin, due to low adherence, and therefore decreasing the efficacy of ampicillin
therapy. Low-level penicillin resistance is innate for most strains of E. faecium but is rarely
found for strains of E. faecalis [20]. Data obtained in this study supports this statement, as
these mutations were not observed in any of the analysed samples of E. faecalis.

In one case, an isolate had a mutation in the 23S rRNA (G2576T), which promotes the
development of resistance against linezolid—a relatively new, synthetic, oxazolidinone
class antibiotic. This is the drug of choice for critically ill patients in intensive care units
with VRE or methicillin-resistant Staphylococcus aureus infections [21]. None of the more
prevalent linezolid resistance genes, such as poxA, optrA or cfr were detected.

To verify the accuracy of the data, the antimicrobial susceptibility for this isolate was
retested using the broth microdilution method and showed minimal inhibitory concentra-
tion (MIC) of 16 µg/mL (R ≥ 4 µg/mL). This sample was vanB type vancomycin-resistant
E. faecium, isolated from the material of a central venous catheter at the hospital “A” in
2021. Both of the previously mentioned mutations, which cause resistance against fluoro-
quinolones and ampicillin, were also observed in this sample; therefore, it was resistant to
all nine classes of antimicrobial agents observed in this study. This finding might indicate
an increase in resistance against linezolid, further decreasing the possibility of using this
antibacterial agent for the treatment of VRE infections. In accordance with the information
available to us, this is the first documented case of linezolid resistance in Latvia at the time.

Overall, during the process of genetic analysis, we discovered that a total of 20 anti-
microbial resistance genes were detected and in many of the isolates, the clpL gene was also
detected. It is stated in the scientific literature that isolates harbouring this clpL gene have a
higher tolerance against stressful conditions, including high temperatures and disinfection,
and are more efficient in the production of biofilms [22,23]. This should be taken into
consideration when performing cleaning and disinfection of hospital facilities where such
bacteria are persisting in such situations; cleaning and disinfection procedures must be
performed with careful diligence and cautiousness. During sequence analysis of the clpL
gene location within the genome, it was mostly detected to be located on mobile genetic
elements, which, as mentioned before, eases the transfer of the gene among bacteria and
provides an opportunity to “delete” the gene via deletion, if required.

The selection of vancomycin-resistant Enterococci is also creating increasingly high
concerns among healthcare professionals. From all 140 samples, 25.0% were vancomycin
resistant, which is an alarmingly high rate. In comparison, according to the data published
by the European Centre for Disease Prevention and Control in 2022, E. faecium isolates
with a vancomycin AMR phenotype were observed in 17.2% of all invasive samples tested
in EU/EEA (excluding the UK) [24]. Despite the fact that in Europe vancomycin vanA
type resistance has been dominating for a long time, increasing numbers of vanB type
VRE have been seen in the past few years [25–27]. In this study, the vanB type was
dominant as well, being found in 25 isolates out of 35 (71.4%). Unlike the vanA type,
which is resistant to vancomycin and teicoplanin, this type is known to be susceptible to
the safer antibiotic options between the two—teicoplanin, which causes fewer adverse
effects with the same efficacy. In 16 samples with vanB type resistance (64.0%), the genes
were located in the Tn1549 transposon. This supports bacterial adaptability and survival
against vancomycin, and also horizontal gene transfer with the vanB gene between bacteria.



Medicina 2024, 60, 850 11 of 13

One vancomycin-resistant vanC type was also detected in the E. gallinarum isolate. All
of the VRE isolates had all of the regulatory genes. Regulatory genes are necessary for
bacteria to recognise antibiotics and react accordingly, by initiating responsible genes [28],
as without them, resistance would not be possible. This is similar to the vanHAX/HBX
operon—dehydrogenase vanH, ligase vanA and vanB and dipeptidase vanX—working
simultaneously to change the binding site of vancomycin, and therefore prevents it from
binding to the cell wall [29].

Enterococci showed a variety of sequence types highlighting the genetic diversity
among the species. The dominant sequence type of analysed Enterococci was ST6 (24.4%)
and ST80 (30.9%) for E. faecalis and E. faecium, respectively. Both are known to be hospital-
acquired types and one of the predominant clones among CC17 in Europe. Based on the
obtained information, it is also possible to conclude that samples of E. faecalis with ST6 are
more likely to have vancomycin resistance, which also pertains to vancomycin-resistant
specimens of E. faecium with ST78 and ST80. Interestingly, almost half (46.2%) of the initial
VR E. faecalis with ST774, had no vancomycin resistance genes at the time of sequencing.
This might indicate that this strain of E. faecalis is more prone to VR gene deletion after just
a few recultivations, unlike other strains.

Regarding E. faecalis, two possible outbreaks, mainly in hospital “B”, were observed.
Although the strains did not contain vancomycin-resistant bacteria, they still contained
multidrug-resistant Enterococci. In the case of E. faecium, five related clusters of isolates
were detected and might indicate an outbreak. Three of them contain VRE. The vanB type
resistant Enterococci were mostly dominant within hospital “A” and one case of a vanA
type VRE outbreak was noted in hospital “B” in the year 2022.

When comparing EUCAST data for VR E. faecium prevalence in Latvia in 2020 (25.0–50.0%
of E. faecium were VR), the incidence in 2021 and 2022 has remained high; therefore, more strict
infection control measures to decrease the emergence of resistant bacteria should be considered
and implemented in hospital settings, as well as the number of microbiological susceptibility
testing should be intensified for better adjustment of antibacterial therapy. Possibly, one of
the reasons for the decreased transmission of VRE might be a more extensive performance
of therapeutic drug monitoring procedures; TDM protocol was already used in hospital
“B”. In comparison, VRE rates at this hospital were significantly lower than at hospital “A”.
However, it must also be noted that the implementation of therapeutic drug monitoring
procedures can be challenging, considering the need for a multidisciplinary team, consisting
of various healthcare experts, including doctors, clinical pharmacists and microbiologists,
to obtain accurate and clinically relevant antibiotic concentrations and ensure appropriate
communication among involved healthcare professionals [30], as well as the related economic
impact of such approaches [31], to maintain principles of the best clinical practices.

As for the limitations of this study, it is important to understand that although random
sampling was used within each hospital, the different sample sizes (42 from A and 98 from
B) do not reflect the actual population sizes of these regions. This means our findings apply
to the sampled individuals but may not be directly generalizable to the entire hospital’s
populations of A and B. We chose this approach to avoid biasing the results towards
one population size. However, we recognize that the different sample sizes and lack of
proportionality to population size limit the results’ generalizability to broader populations.

5. Conclusions

The pilot study of randomly sampled Enterococci samples from patients shows that
the incidence of vancomycin-resistant E. faecium samples from 2021 to 2022 remains
high—49.1% (n = 27/55). The prevalence of vancomycin resistance was highest in the
hospital without a therapeutic drug monitoring protocol. The dominating vancomycin
resistance phenotype was vanB. In addition, the clpL gene, associated with stress tolerance,
including against higher temperatures, and biofilm production, was also frequently ob-
served. A mutation (G2576T) in the 23S rRNA gene was detected, leading to resistance
against linezolid which is a currently rare and concerning issue. The most prevalent clini-
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cally isolated strains of Enterococci among the two Latvian hospitals are ST6 for E. faecalis
and ST80 for E. faecium, both being multidrug resistant.
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