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Abstract: Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lym-
phoma worldwide, constituting around 30–40% of all cases. Almost 60% of patients develop relapse
of refractory DLBCL. Among the reasons for the therapy failure, tumour microenvironment (TME)
components could be involved, including tumour-associated macrophages (TAMs), myeloid-derived
suppressor cells (MDSCs), tumour-associated neutrophils (TANs), cancer-associated fibroblasts
(CAFs), and different subtypes of cytotoxic CD8+ cells and T regulatory cells, which show complex
interactions with tumour cells. Understanding of the TME can provide new therapeutic options
for patients with DLBCL and improve their prognosis and overall survival. This review provides
essentials of the latest understanding of tumour microenvironment elements and discusses their role
in tumour progression and immune suppression mechanisms which result in poor prognosis for
patients with DLBCL. In addition, we point out important markers for the diagnostic purposes and
highlight novel therapeutic targets.

Keywords: diffuse large B cell lymphoma (DLBCL); tumour microenvironment (TME); tumour-
associated macrophages (TAM); tumour-associated neutrophils (TAN); T cell; cancer-associated
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1. Introduction

Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin
lymphoma worldwide, constituting around 30–40% of all cases in different geographic
regions [1]. According to the Munich Cancer Registry, collecting data from the Upper-
Bavarian region of Germany, around 211 cases of DLBCL were registered per year, corre-
sponding to an incidence of 4.2/100,000 [2]. Based on United States cancer registry data, the
incidence of DLBCL is 7.2/100,000 [3]. The incidence increases with age and generally is
higher in males than in females [2,3]. The 5-year survival in DLBCL patients, according to
National Cancer Institute (NIH) data for the time period 2014–2020, is 64.7% with mortality
1.7/100,000 [4]. In the Upper-Bavarian region of Germany, mortality constitutes around
43.7% for the same period [2]. A significant impact on the survival was reached with the
invention of anti-CD20 monoclonal antibodies such as Rituximab, which boosted the com-
plete response rate to 76% with the R-CHOP treatment scheme (compared to 63% with the
standard CHOP protocol) [5]. Approximately 30% to 40% of patients with DLBCL achieve
and maintain complete remission after first-line therapy. New challenges appear along
the course of treatment, such as so-called relapse of refractory DLBCL (RR-DLBCL) [6].
According to the SHOLAR-1 study group, which aims to improve treatment options of
RR-DLBCL, only 26% of patients had a response to the next line of therapy, with a median
survival rate of 6.3 months. Only 20% of patients with refractory disease were alive at
2 years [7]. The poor outcomes have moved the focus of modern studies towards better
understanding of DBLCL and its microenvironment (TME), which play a significant role in
the development of resistance against the main treatment scheme.

The aim of this review is to provide comprehensive pathogenetic analysis of the
components of the DLBCL microenvironment in the wider context of carcinogenesis and
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to make a correlation between TME and future treatment options in order to improve our
understanding of DLBCL and its treatment options.

2. Components of Diffuse Large B-Cell Lymphoma

The interaction between tumour cells and the nearby peritumoural stroma has been
thoroughly investigated in numerous cancer types over the past few decades as a dynamic
system that encompasses carcinogenesis, tumour invasion, and metastatic spread. The
tumour components are classified as cellular ones, including the neoplastic cells; fibroblasts;
immune, endothelial, mesenchymal stem cells; and non-cellular compounds, including
growth factors, cytokines, extracellular matrix, hormones, and even viruses. All the non-
neoplastic components create the tumour microenvironment (TME) [8]. In the modern
WHO classification (2022), DLBCLs are classified by cell-of-origin (COO) classification
based on gene-expression profiling: the activated B-cell-like (ABC) and the germinal
centre B-cell-like (GCB) and not-yet classified type 3 or T cell/histiocyte-rich large B-
cell lymphoma (T/HRLBCLs) [9,10]. Activated B-cell type shows significantly worse
prognosis and higher resistance to the standard R-CHOP regimens. Double-hit variants
which overexpress MYC and BCL2 proteins are defined as aggressive DLBCLs and are also
associated with a poor prognosis [11]. Looking into cellular TME, many studies report
on infiltration of tumour-associated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs), tumour-associated neutrophils (TANs), natural killer cells (NKc), cancer-
associated fibroblasts (CAFs), and dendritic cells (DCs) [12–17]. These cellular components
may exhibit pro- and/or anti-tumourigenic functions affecting the prognosis as well become
targets for additional therapy (Table 1).

Table 1. Role of tumour microenvironment components.

Cell Type Sub-Types Major Role in TME Function Released Factors

TAMs

M1 Anti-tumourous Cytotoxicity

M2 Pro-tumourous

Suppression of CD8+ T cells
TGF-β
ARG1
IL-10
IDO

Angiogenesis

VEGF
PDGF
Angioprotein 2
CXCL1
FGF2

Promoting dissemination
MMP2
MMP9
CCL18
Cathepsin

MDSCs

PNM-MDSCs Pro-tumourous Suppression of CD8+ T cells
TGF-β
ARG1
IL-10
IDO

M-MDSCs Pro-tumourous
Promoting of CD4+ Treg
Suppression of NK cells IDO1

Suppression of CD8+ T cells and B cells iNOS promoting PGE2

TANs

N1 Anti-tumourous

Stimulation of NK cells IL-8

Cytotoxicity
ROS
MPO
H2O2
Proteases

N2 Pro-tumourous

DNA damage NOS
ROS

Suppression of CD8+ T cells ARG1

Angiogenesis VEGF
MMP9
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Table 1. Cont.

Cell Type Sub-Types Major Role in TME Function Released Factors

CAFs

mCAFs Unspecified Stromal matrix remodelling MMP11
COL1A2

iCAFs Pro-tumourous Promoting MDSCs CCL2
IL-6

vCAFs Pro-tumourous Angiogenesis

tCAFs Pro-tumourous Promoting tumour growth
MME
CAIX
TMEM158

CD8+ T cells

Tc1 Anti-tumourous Cytotoxicity

IFN-y
TNF-α
Granzyme B
Perforin

Tc2 Pro-tumourous Interactions in TME
IL-4
IL-5
IL-10

Tc9 Pro-tumourous Promoting tumour growth IL-9
IL-4

Tc17 Pro-tumourous

Promoting tumour growth
Angiogenesis IL-17

Promoting TANs IL-17

Suppression of NK cells IL-22

CD4+ Treg Pro-tumourous Suppression of CD8+ T cells

IL-2
IL-10
TGFb
IL-35
CTLA-4

Abbreviations in the table. TAMs, tumour-associated macrophages; MDSCs, myeloid-derived suppressor cells;
PMN-MDSCs, polymorphonuclear myeloid-derived suppressor cells; M-MDSCs, monocytic myeloid-derived
suppressor cells; TANs, tumour-associated neutrophils; CAFs, cancer-associated fibroblasts; NK cells, natural
killer cells; Treg, T regulatory cells; Tc, T cytotoxic cells; TGF-β, tumour-growing factor beta; ARG, arginase;
IL, interleukin; IDO, indoleamine 2,3-dioxygenase; NOS, nitric oxide synthase; iNOS, inducible NOS; PGE2,
prostaglandin E2; ROS, reactive oxygen species; MPO, myeloperoxidase; PDGF, platelet-derived growth factor;
VEGF, vascular endothelial growth factor; CXCL1, chemokine (C-X-C motif) ligand 1; FGF2, basic fibroblast
growth factor; MMP, matrix metalloproteinase; CCL, chemokine (C-C motif) ligand; CAIX, carbonic anhydrase
IX; COL1A2, collagen 1A2; MME, membrane metallo-endopeptidase; TMEM, transmembrane protein; IFN-y,
interferon gamma; TNF-α, tumour necrosis factor alpha; CTLA, cytotoxic T-lymphocyte-associated protein.

3. Tumour-Associated Macrophages (TAMs)

Tumour-associated macrophages (TAMs), a prominent type of tumour-infiltrating im-
mune cells, are typically classified into two functionally distinct subtypes. The first subtype
is represented by classically activated (M1) macrophages, which have proinflammatory
and anti-tumour properties, allowing them to precisely identify and eliminate cancer cells
through cytotoxicity and phagocytosis. On the other hand, alternatively activated (M2)
macrophages exhibit anti-inflammatory characteristics and play a role in tissue repair and
growth, which works as a pro-tumourous factor, making a more “comfortable” environ-
ment for tumour cells [18]. Importantly, TAMs of both M1 and M2 types can dynamically
transition between phenotypes in response to changes within the tumour microenviron-
ment. The polarisation of TAMs is influenced by a diverse array of cytokines, growth
factors, chemokines, and other signals emanating from tumour and stromal cells. CCL2
is the primary chemokine expressed by tumour cells and plays a key role in attracting
immune cells, particularly TAMs, via the CCL2/CCR2 axis [19]. When the CCR2 receptor
is activated by its ligand CCL2, it initiates diverse G protein-mediated signalling cascades
inside the cell, including the phosphatidylinositol 3-kinase (PI3K)/AKT, mitogen-activated
protein kinase (MAPK)/p38, and Janus kinase (JAK)/ transducer and activators of tran-
scription 3 (STAT3) pathways. The activation of these signalling pathways is crucial for
anti-apoptosis, angiogenesis, and cell migration, which collectively contribute to oncogenic
progression [20]. Polarisation towards the M2 phenotype is usually induced by the presence
of Th2 cells producing interleukins 13 (IL-13) and 4 (IL-4), as well as enhanced expres-
sion of colony-stimulating factor 1 receptor (CSF1R) on the surface of a macrophage [21].
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Functionally, these macrophages facilitate tumour immune evasion, promote angiogenesis,
and contribute to tumour growth and dissemination [22]. M2-like macrophages secrete
factors including vascular endothelial growth factor (VEGF), platelet-derived growth factor
(PDGF), angiopoietin 2, CXCL1, and fibroblast growth factor 2 (FGF-2) for stimulating
angiogenesis [23]. Matrix metalloproteinase 2 (MMP2) and 9 (MMP9), cathepsin, CCL18,
and CYP4A promote extracellular matrix (ECM) breakdown and stimulate tumour dissem-
ination. The third important function of the TAMs is interaction and suppression of T cells
via arginase 1 (Arg-1), IL-10, transforming growth factor beta (TGF-β), and indolamine
2,3-dioxygenase (IDO), resulting in local immune response evasion [24]. TAMs have been
shown to produce cytokines such as C5a, IL-6, and TNF-α, which activate the STAT3 and
nuclear factor-κB (NF-κB) pathways, that are important for the macrophage polarisation.
The process can be directed towards the M1 phenotype through STAT1 signalling with
the help of adaptor proteins MyD88 and TRIF, which regulate signalling downstream of
TLR4, an important activator of NF-κB and, on the opposite side, the M2 phenotype is
promoted through STAT6 [25] signalling induced by IL-4 and IL-13 [26]. Huber et al.,
analysing the TME of melanoma, found an increased level of High-Mobility Group Box 1
protein (HMGB1) levels in patients’ serum, compared to the healthy patients, secreted by
the melanoma tumour. HMGB1 had a direct impact on recruitment of M2 macrophages
and production of interleukin 10 (IL-10) through a receptor for advanced glycation end
product (RAGE)-dependent signalling [27]. IL-10 has an ability to suppress the production
of IL-2 and interferon-γ (IFN-γ). Additionally, it can affect CD4+ T cells by suppressing
their antigen-specific activation and proliferation in lymph nodes, reducing their release of
cytokines like IL-4, IL-5, and TNF-α, as well as their cytotoxic capabilities [28], which are
crucial for the activation of M1 macrophages and anti-tumourous effects, as well producing
IL-4 and host a positive feedback loops promoting more M2 macrophages [29] (Figure 1).
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Figure 1. Role of tumour-associated macrophages (TAM) in tumour microenvironment (TME).
Figure shows pro-tumourous effects of TAM-M2 cells as suppressing of cytotoxic and helper T cells,
stimulating angiogenesis and dissemination of the tumour. The TAM-M1 type has an anti-tumourous
function by cytotoxicity and phagocytosis.

To have a potential treatment aimed at TAM M2 cells, it is crucial to identify their
presence in the tumourous tissues. Significant markers which are specific for M2 cells are
mannose receptor (CD206) and scavenger receptor hemoglobulin (CD163). These receptors
could be potentially diagnosed by immunohistochemistry or flow cytometry methods [30].



Cells 2024, 13, 1057 5 of 19

Potential targeting of TAMs could be beneficial in complex use along with other regimens.
Among the current research focuses, there is the approach to inhibit TAM recruitment by
blocking CSF-1R with monoclonal antibodies such as Emactuzumab (RG7155) [31,32] or
tyrosine kinase inhibitor Pexidartinib (PLX3397). Another promising approach would be
to block CCR2 receptors. Some studies have already shown improved overall survival
compared to standard regimens (29% versus 18.6%) by using CCR2 inhibitor CCX872 in
advanced pancreatic cancer [33]. Potential targeting of CCL2 with human monoclonal
antibody Carlumab also may show beneficial results in the future [30].

In DLBCL the prognostic importance of the total population of CD68+ macrophages
and even M2 macrophages is less clear. The published data have revealed that bulky mass
and a higher number of M2 TAMs were significant factors for poor prognosis (p < 0.05) [34].
However, in another report, a high presence of TAMs showed association with more
favourable prognosis, increased 5-year progression-free survival and overall survival. In
patients who were treated with chemotherapy (CHOP regimen), high expression of the
CD68+ cells revealed poor prognosis, but addition of rituximab to chemotherapy reversed
the negative prognostic impact of high CD68+ TAM content to favourable [35]. In addition,
there are publications where no associations between CD68+ TAMs and other clinical
factors or prognostic outcome in DLBCL patients were reported [36]. J. E. Chang et al.
have reported that a combination of R-CHOP regiments, together with GM-CSF, increases
overall survival in patients with DLBCL [37]. GM-CSF was found to contribute to PD-L1
overexpression through the activation of the STAT3 pathway, alongside interferon (IFN)-
γ [38] and induce repolarisation of M2 macrophages to M1 based on the PI3K/AKT/mTOR
pathway [25]. The importance of TAMs is crucial in the TME; therefore, more clinical
studies of targeting macrophages are needed to find novel treatment options for patients
affected by DLBCL, and especially refractory DLBCL.

4. Myeloid-Derived Suppressor Cells (MDSCs)

The story of the myeloid-derived suppressor cells (MDSCs) started to evolve in 1978.
In tumour-bearing mice models, immature myeloid cells were found to have the potential
of suppressing T cell function and proliferation and thus consequently impacting poor prog-
nosis. In further studies, researchers started to use an alternative name, myeloid suppressor
cell, based on the cell role in the tumour and its inflammatory microenvironment [39].
Because this nomenclature was misleading and could result in diverse misunderstandings,
Dmitry I. Gabrilovich et. al. suggested the term myeloid-derived suppressor cells, that
combines the nature/origin and the function of the observed cells [40]. MDSCs originate
from common myeloid progenitor cells in the bone marrow (BM). Their development
is regulated by a complex array of signals, broadly categorised into those that encour-
age the accumulation of immature myeloid cells and those that lead to the pathological
activation of these cells. Many studies have observed the accumulation of MDSCs in
the BM of tumour-affected hosts, highlighting the changes in the myeloid compartment
due to the presence of cancer in the body [41,42]. The pathological activation of MDSCs
results from ongoing, relatively weak stimulation from tumour-derived signals in con-
trast with the fast and strong activation of myeloid cells by infections such as bacteria or
viruses, which involves rapid differentiation into mature cells [43]. Stimulation of MDSCs
in cancer patients is mostly driven by tumour-derived growth factors such as granulocyte-
macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor
(G-CSF), macrophage colony-stimulating factor (M-CSF), VEGF, and IL-6 [44,45]. These
growth factors co-function through the signals via transducer and activators of transcription
1 (STAT1) [46], STAT3 [47] and STAT6 as well as retinoblastoma protein 1 (RB1) [48].

MDSCs are composed of two major categories of cells, known as granulocytic or
polymorphonuclear (PMN-MDSCs), which share phenotypic and morphological charac-
teristics with neutrophils, and monocytic (M-MDSCs), which are similar in phenotype
and morphology to monocytes [49]. MDSCs have a phenotype of CD11b+ and CD33+. In
addition to this, PMN-MDSCs also are CD15+ and CD66b+ compared to the M-MDSCc,
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which are CD14+ [50]. The main factors in MDSCs immune-suppressing abilities involve
arginase 1 (ARG1), iNOS, TGF-β, IL10, cyclooxygenase-2 (COX-2), and indoleamine 2,3-
dioxygenase (IDO) expression on T cells. Increased ARG1 expression has been found in
many tumours, e.g., hepatocellular carcinoma, non-small cell lung cancer, and carcinoma
of the large bowel. Increased synthesis of ARG1 by MDSCs strongly correlated with an
increased risk of relapse in breast carcinoma [51]. ARG1 catabolises arginine, an amino
acid required for T cell activation and proliferation [52]. NO products result in increased
Nox2 activity and production of prostaglandin E2 (PGE2). PGE2 inhibits signalling via
T cell receptors, potentially contributing to the resolution of inflammation. Furthermore,
PGE2 restricts the immune response by blocking B-lymphocyte differentiation and im-
pairing their capacity to present antigens [53]. TGF-β-deficient mice models have shown
reduced proliferation of T cells through several mechanisms, including modulation of
the mechanistic target of rapamycin (mTOR) and Forkhead box O3 (FOXO3) [54]. The
mechanism by which IDO1 induces immunosuppression remains partially unclear, yet it is
established that elevated levels of IDO1 can suppress natural killer (NK) cell activity, inhibit
effector T cell activation, and promote the activation of regulatory T cells (Tregs) as well
as the differentiation of tolerogenic dendritic cells. Additionally, IDO1 fosters the growth
and activation of myeloid-derived suppressor cells. It also blocks the target of rapamycin
complex 1 (mTORC1), which leads to T cell apoptosis and reduces inflammation mediated
by antigen-presenting cells [55] (Figure 2).
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Figure 2. Role of myeloid-derived suppressor cells (MDSCs) in tumour microenvironment (TME).
Figure shows negative effects mostly aimed at immune suppression in the TME.

Many studies have reported on the presence of MDSCs as a poor prognostic factor
in diverse types of tumours, including Hodgkin’s and B cell lymphomas, gastric cancer,
and colorectal carcinoma, thus highlighting MDSC as potential targets in the treatment of
haematological and solid malignant tumours [56–59]. Treatment options targeting MDSCs
may be oriented toward depletion and differentiation by using standard chemotherapy regi-
mens such as 5-fluorouracil, carboplatin, or paclitaxel, and showed increased levels of INF-y,
which was crucial for development of cytotoxic CD8+ T cells, but unfortunately worked as a
double-edged sword by deficiency of specificity on the MDSCs [59]. Better targeted therapy
could be based on the CD33 monoclonal antibodies such as gemtuzumab ozogamicin (GO),
which is an approved treatment regimen for acute myeloid leukaemia [60]. There is still
a lack of clinical trials of use of GO in targeting TME, but it could be a promising future
treatment option. Targeting of MDSCs function could be a good additional component of
complex treatment improving the prognosis of the patients. Meyer et al. have reported
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on benefits of phosphodiesterase-5 (PDE5) inhibitor sildenafil to impact MDSCs function
by decreasing secretion of ARG1, IL-1β, IL-6, and VEGF in tumour-bearing mice and
thus improving their survival [61]. Additionally, COX-2 inhibitors may play a significant
role by blocking PGE2 production and, through that, inhibit MDSCs and increase T cell
activity. The last target option is to disrupt chemotaxis of MDSCs into the tumour niche.
STAT3 inhibitors nowadays are considered a potential addition to the immune therapy.
The absence of crucial immunosuppressive factors in the TME may improve the outcomes
in patients with metastatic or refractory diseases [62]. In DLBCL, the quantity of M-MDSCs
has been linked with the International Prognostic Index, event-free survival, and the num-
ber of circulating Tregs. Additionally, depletion of monocytes resulted in restored T-cell
proliferation. The suppression of T cells by myeloid cells was associated with the release
of interleukin-10 and S100A12, along with an increase in PD-L1 expression [63]. Similar
findings were observed in anaplastic DLBCL, where higher levels of MDSCs were associ-
ated with increased PD-L1 expression [64]. The most important idea of targeting MDSCs is
increased activity and the presence of cytotoxic T cells in the tumour niche, which could
increase the efficiency of the immune therapy and targeting PD-1/PD-1L with drugs such
as pembrolizumab.

5. Tumour-Associated Neutrophils (TANs)

Neutrophils are the largest group of immune/inflammatory cells in the peripheral
blood, constituting around 50–70% of all leukocytes. These short-living cells, having a
life span around 7 h, are well known for their active response in acute inflammation
scenarios [65]. Only recently, their role has started to be assessed from the perspectives
of chronic inflammatory response and especially in the pathogenesis of the tumour mi-
croenvironment. In solid tumours, an abundance of neutrophils often correlates with poor
outcome and prognosis, as reported in melanomas [66], bronchoalveolar carcinomas [67],
or head and neck squamous cell carcinomas [68]. Neutrophils in cancer patients exert a
pro-tumoural or an anti-tumoural effect [16], which make their role ambiguous in the TME.
Neutrophils, similarly to the PMN-MDSCs, take their origin from multipotent granulocyte–
monocyte progenitors (GMPs) [69] and are stimulated by GM-CSF and G-CSF [70], by
which they share a similar CD14−CD15+CD66b+CD16+ phenotype [65,71]. Recruitment
of the TANs is mediated through different chemokine receptors CXC-chemokine receptor
2 (CXCR2), CXCR4, and CXCR5 and their ligands. Expression of CXC-chemokine ligand
12 (CXCL12) by bone marrow stromal cells is responsible for retaining CXCR4+ immature
neutrophils [72]. In hepatocellular carcinoma models, CXCR2 is activated via Erk1/2, p38,
and NF-κB signals, and increases the life-span of the neutrophils together with pro-tumour
effects. [73]. Polarisation of the TANs also plays a crucial role in tumourigenesis. Signifi-
cant impact on differentiation into the TANs N2 type or pro-tumourous TANs develops
through the TGF-β cytokine. This also works negatively on the differentiation towards
anti-tumourous or N1 type. A completely opposite process is involved in the appearance
of N1-TANs, where the crucial molecule is INF-β [74]. This fact shows plasticity of the
TANs depending on the spectrum of secreted cytokines by tumour and surrounding tis-
sues. Anti-tumourous effects are mostly based on the release of toxic granules, containing
reactive oxygen species (ROS), myeloperoxidase (MPO), peroxides, and proteases. These
compounds are highly effective in antimicrobial protection, but also have a potential for
anti-tumour activity [73]. Except the granules, N1 TANs produce cytokines such as IL-8,
which promotes proliferation of the NK-cells into the tumour niche and indirectly promotes
cytotoxic immune response [75] (Figure 3).
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Figure 3. Role of tumour-associated neutrophils (TANs) in the tumour microenvironment. N1-TANs
have shown cytotoxicity by producing toxic granules and have anti-tumourous effects. N2-TANs,
conversely, are pro-tumourous, by increasing DNA damage to the tumour, which leads to the new
mutations in the DNA, suppressing cytotoxic T cells and stimulating angiogenesis.

Some authors have noted infiltration of TANs as favourable for overall survival (OS)
in non-small cell lung cancer [76], gastric cancer, and oesophageal cancer [77]. On the
other hand, N2 TANs may play a significant role in the tumourigenesis, by producing
nitric oxide synthase (NOS). Multiple studies concluded that the number of neutrophils
strongly correlated with the mutational burden in the tumour, as NOS and ROS, the most
secreted molecules of neutrophils, have the potential to damage DNA [78–80]. Genetic
instability stimulates tumour proliferation and survival despite the standard therapy [81].
This mechanism is completely opposite to the cytotoxic effects of ROS. Evidently, the result
is dependent on the concentrations of ROS molecules in the tumour niche as well as the type
of neutrophils. This process is most probably controlled by the tumour, and more studies
are necessary to predict the role of the TANs in the TME. Another pro-tumourous molecule
secreted by the TANs is ARG1 [82], which, in the same manner as MDSCs, suppress
cytotoxic T cell proliferation. Production of the VEGF and matrix metalloproteinase-9
(MMP-9) also stimulates tumour angiogenesis. The amount of MMP-9 produced by the
TANs is much higher compared with TAMs [83], which may indicate worse prognosis
and higher risk of metastatic spread of the tumours. In therapeutic aims, TANs are still
controversial cells, because of their short life-span and controversial function. Even as a
prognostic marker, TANs are hard to use practically, because of the controversial reports in
different studies. Still, more research is needed to understand TANs’ role in the tumour
TME. In DLBCL, the pro-tumourigenic activities of neutrophils are believed to dominate,
contributing to a poor prognosis. Notably, the CXCL-8/CXCR-1 pathway was identified
as a significant target, presenting a potential therapeutic strategy for addressing tumour-
associated neutrophils [16,84].

6. Cancer-Associated Fibroblasts (CAFs)

Cancer-associated fibroblasts are an important component in the tumour, constituting
and building the supportive skeleton of the tumour—the stroma. CAFs represent the “soil”
of the malignancy and secrete growth factors, inflammatory ligands, and extracellular
matrix proteins that encourage tumour proliferation, therapy resistance, and immune
exclusion, leading to poor prognosis and shorter overall survival [85]. CAFs are a het-
erogenous population of cells; therefore, identification and isolation of specific types can
be difficult. One of the differentiation studies was done by immunohistochemistry on
two major CAF groups: alfa smooth muscle actin (aSMA) high and IL-6 low group, better
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known as myofibroblasts (myCAFs), and aSMA low and IL-6 high or inflammatory CAFs
(iCAFs). myCAFs usually are driven by the tumour and are located near tumour cells,
promoting dual functions such as restricting or promoting tumour growth depending on
the tumour stage [86]. iCAFs, driven by secreted IL-1 and TNF-α and located more distantly
from the tumour, are generally confirmed as tumour-promoting cells through secretion
of inflammatory cytokines and growth factors, stimulating proliferation, metastasis, and
chemoresistance. CAFs are not permanent and can shift back and forth between subtypes
using the TGF-β signalling pathway [87]. Another subtyping approach was suggested by
Cords et al. using scRNA-seq to identify matrix CAFs (mCAFs), associated with upreg-
ulated expression of matrix metalloproteinase 11 (MMP11) and collagen 1A2 (COL1A2)
genes. The importance of mCAFs is associated with the matrix remodelling features and
formation of the stroma. The second-largest cluster was identified as inflammatory CAFs
(iCAFs) expressing the PLA2G2A gene as well as showing association with complement
system genes and CD34 [88]. iCAFs are promoted by fibroblast activation protein (FAP)
and STAT3 activation, resulting in secretion of CCL2 and IL-6, significant for promoting
MDSCs infiltration into the tumour microenvironment and supporting the growth of malig-
nant cells [89]. The third important group of CAFs was named vascular cancer-associated
fibroblasts (vCAFs). They overexpress NOTCH3, COL18A1, and MCAM, significant for
vascularisation of the tumour. Another group of fibroblasts were found in tumour-derived
hypoxic regions and secrete membrane metalloprotease (MME) TMEM158 and hypoxia
marker carbonic anhydrase IX (CAIX), an indicator of the RAS pathway activation and
promoting angiogenesis. Because of the similarity to the tumour behaviour, this cluster was
named tumour CAFs (tCAFs) [88]. Significant markers, which may help identify CAFs, are
αSMA, PDGFRα, and FAP. A significant disadvantage lies in the heterogeneity of CAFs and
the corresponding lack of marker specificity [90], which make CAFs a challenge for targeted
therapy. In the mice model of pancreatic ductal adenocarcinoma (PDA), Feig et al. noticed
ineffectiveness of checkpoint inhibitors targeting anti-cytotoxic T-lymphocyte-associated
protein 4 (α-CTLA-4) and α-programmed cell death 1 ligand 1 (PD1-L1). PDA had large
infiltration of FAP+ CAFs overexpressing CXCL12 and the absence of cytotoxic T cells.
After administration of AMD3100, a CXCL12 inhibitor, it turned over the response to check-
point inhibitors and dramatically increased the presence of T lymphocytes, proving the
anti-inflammatory potential of CAFs, resulting in the resistance to therapy [91]. Analysis of
gastric cancer has shown that high-CAF groups have a positive correlation with M2-TAMs
and M-MDSC and result in pro-tumourous effects and poor prognosis. The low-CAF group,
oppositely, showed increased numbers of CD4+ T cells (Th1 and Th2) and correlated with
better prognosis due to anti-tumourous function of T cells [92]. Hegab et al. reported on
CAF presence in mice bearing lung adenocarcinoma. Tumours showed dependence on
fibroblast growth factor (FGF), and production of FGF9 from CAFs resulted in multiple
adenocarcinoma-like tumour nodules. Also, the model showed increased levels of TAMs
and transforming growth factor beta (TGF-β), MMP7, FGF9, and FGF2 in the tumour niche.
In vivo inhibition of FGF9 resulted in fewer tumour nodules [93]. Multiple studies have
reported overexpression of TGF-β in high-CAF groups [87,88,93,94]. High levels of TGF-β
may predict the resistance to the checkpoint inhibitors by suppressing T cell proliferation in
TME [95], which makes TGF-β a potential target as an addition to the checkpoint inhibitor
therapy [96]. Administering both TGF-β inhibitor SRK-181-mIgG1 and an anti-PD-1 anti-
body to mice with tumours that were resistant to anti-PD-1 therapy resulted in significant
tumour reduction and increased survival rates [97]. Additionally, it boosted the effective-
ness of 5-fluoruracil (5-FU) in the invasive behaviour of colorectal cancer cells by increasing
E-cadherin levels and suppressing the enzymatic activity of MMP-9 [98], suppressing c-Myc
expression in osteosarcoma cells, enhancing immune effectors (IFNγ+CD8+ cells and NK
cells), and reducing the number of immune suppressors (M2-like TAMs, MDSCs) in the
tumour microenvironment [99]. In DLBCL, Kotlov et al. noted an association between
TAMs and CAFs, leading to the calculation of a TAM/CAF ratio. This ratio correlated with
an increased risk of mortality. Furthermore, in the segment of the DLBCL matrisome with



Cells 2024, 13, 1057 10 of 19

a lower TAM/CAF ratio, there was an enrichment of CAF-associated proteins, which was
associated with a more favourable prognosis [84].

7. Role of T Lymphocytes in Tumour Pathogenesis

T lymphocytes are the main regulators of immune response in the tumour microen-
vironment. There are two main types of T cells: CD4+ cells, better known as T helper
(Th) cells, which work as coordinators of immune cells, and CD8+, which are known
for their cytotoxic abilities (Tc), precisely targeting tumour cells [100]. The modern anti-
cancer therapies focus on the cytotoxic abilities of T cells and potential activation of them
in the tumour domain, and consist of checkpoint inhibitors such as PD-1 inhibitors like
Pembrolizumab [101], chimeric antigen receptor T (CAR-T) cell therapy [102], bispecific
antibodies (BsAbs) [103], and so-called nanobody complexes [104]. The effectiveness of
these technologies can be boosted with a higher presence of the Tc in tumour tissues. CD8+
T cells are often considered a homogeneous group of cells known for secreting significant
quantities of IFN-γ, TNF-α, the protease granzyme B and perforin, but recent studies have
identified multiple subtypes of Tc, which reflect the spectrum of CD4+ T cells and are
upregulated by different interleukins. There are four main subtypes: Tc1s, Tc2s, Tc9s, and
Tc17s [105]. The Tc1 type mostly corresponds to classical CD8+ cells, which are promoted
mostly by IL-12, secreted from Th1 [105–107]. Tc1s secrete IFN-γ and TNF-α and feature
significant anti-tumour effects causing cell lysis. The Tc2 type, which secretes IL-4, IL-5, and
IL-10, lack production of INF-γ and, by that, yield minor or no effect on cytotoxicity [108].
The presence of IL-4 plus TGF-β develops unique type CD8+ cells such as Tc9, which
are special due to producing high amounts of IL-9 [109]. Tc9 lacks granzyme B, which
results in weak cytotoxic activity. Moreover, Tc9 shares similar activation pathways and
regulation mechanisms as Th9, which makes them closer to the regulatory function during
inflammatory response [105]. The importance of IL-9 in tumour progression is controver-
sial. On one hand, IL-9 correlates with lower amounts of IL-4, IL-10, VEGF, and TGF-β,
which are important for tumour growth. In multiple models, IL-9 showed an association
with improved prognosis and overall survival, when secreted [110]. On the other hand,
other studies showed the involvement of IL-9 in the pathogenesis of multiple malignancies,
such as lymphoma, leukaemia, and lung, breast, and thyroid cancers. IL-9 promotes cell
proliferation and protects cancer cells from apoptosis by downregulating the JAK/STAT
pathway [111] (Figure 4).
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In haematological malignancies, IL-9 could play a special role, as it is important for
lymphocyte activation and proliferation. In DLBCL, IL-9 promotes cell survival and drug
resistance by upregulating p21CIP1 genes. Also, DLBCL showed increased expression of
the IL9 receptor on the cell surface and was associated with poor prognosis [112]. IL-9
also shows a significant role in chronic lymphocytic leukaemia, Hodgkin lymphomas and
cutaneous T cell lymphomas [110]. Another subtype, known as Tc17, also has shown its
correlation with inflammatory response in tumours. Their differentiation from CD8+ naive
cells is induced by IL-6 or IL-21 along with TGF-β. Similarly to the Tc9, they exhibit reduced
production of the INF-γ and granzyme B and produce IL-17 and IL-22 [105]. Akbay et al.,
in a study with a mice model of lung cancer, concluded that excessive production of IL-
17 had a direct correlation with cancer growth and infiltration of TANs into the tumour
TME, and reduced the number of cytotoxic lymphocytes, thus increasing resistance to the
PD-1 inhibitors [113]. A study on uterine cervical cancer showed an association of Tc17
promoting Th17 cells and regulatory T cells, and increased tumour angiogenesis. Another
study on IL-17 showed that it promoted infiltration of the MDSCs and Treg cells in colorectal
cancer, which suppressed cytotoxic T cells and activated the STAT3 pathway, important for
multiple pro-tumourous factors such as COX-2 and VEGF [114]. A study of IL-22 function
in lung and breast cancer showed increased incidence of tumour metastases by suppression
of NK cell function [115]. Another significant player in the tumour microenvironment is
represented by regulatory T cells. They carry CD4+ CD25+ FOXP3+ phenotypes and are
responsible for immune suppressive features by secretion of IL-2, IL-10, TGFβ, IL-35, and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [116]. Multiple meta-analyses of
different malignancies in humans and mice have shown negative prognosis for tumours
infiltrated by Tregs, which results in weak infiltration of CD8+ lymphocytes [117,118].
Targeting of Tregs in the cancer TME could be a promising method, but a significant
challenge is the high risk of development of autoimmune diseases [119–121].

8. Targeting Tumour Microenvironment Elements in Diffuse Large B Cell Lymphoma

The tumour microenvironment is a complex communication of tumour cells and
surrounding tissues via small molecules, which is a challenge to target nowadays. There
are multiple studies which prove the importance of TME elements such as TAMs [122],
MDSCs [123], and the CCR2/CCL2 pathway [124] and their influence on the poor prognosis
in patients with diffuse large B cell lymphoma.

According to the analysed literature, the most prominent targets in the TME could
be TGF-β, produced by the tumour itself, TAMs, MDSCs, iCAFs and stimulation of anti-
inflammatory response, and reduced infiltration of the CD8+ Tc1. Nowadays, there are
multiple clinical trials trying to inhibit TGF-β activity in solid tumours, but in the case
of positive results, new designed drugs could be used in the treatment of refractory lym-
phomas as well. One of the most promising drugs is Fresolimumab, a TGF-β1, TGF-β2, and
TGF-β3 inhibitor. Phase 1 studies are now being performed or completed for melanoma,
renal cell carcinoma [125], breast cancer [126], or mesothelioma [127]. One more interaction
with TGF-β is performed with the use of a bifunctional fusion protein targeting TGF-β and
PD-L1—Bintrafusp alfa, which is used also in many solid tumours such as non-small cell
lung cancer [128], head and neck cancer [129], and HPV-positive solid tumours [130]. In
treatment of lymphoma now in trials, there are specific cytotoxic T-lymphocytes resistant
to the TGF-β immunosuppressive effects, which could be a new potential addition in the
treatment in many scenarios, for example, CART therapy [131].

ARG1 figures in many TME elements with similar anti-Tc1 features to be a potential
target for the therapy. A novel oral Arginase 1/2 inhibitor, OAT-1746, was tested in murine
models with glioblastoma [132]. Arginase-1 targeting peptide vaccine is undergoing a
phase 1 trial in multiple solid cancer patients [133], and dual arginase inhibitor OATD-02
has received permission for a phase 1 clinical trial in Poland for patients with advanced
solid tumours [134]. Unfortunately, no clinical trials on arginase-1 inhibitors are currently
in progress for lymphomas.
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IL-10 could also be a potential therapy target. In vivo inhibition of it in colorectal cancer
showed positive treatment results in combination with CART therapy [135]. Unfortunately,
no available clinical trials targeting IL-10 in DLBCL were found.

Currently available VEGF inhibitors such as bevacizumab have shown notable posi-
tive effects in the treatment of HHV8-unrelated effusion large B-cell lymphoma (ELBCL),
suppressing effusion formation and lymphoma cell growth in mouse models [136]. Studies
of COX inhibitors like celecoxib have also shown better prognosis and overall survival in
patients with DLBCL by blocking PGE2 and inducing cell apoptosis [137–139]. Interestingly,
celecoxib showed negative results in patients with DLBCL, who underwent CAR-T therapy
by inducing CAR-T cell apoptosis, and should be used with caution in this particular group
of patients [140].

9. Role of the Tumour Microenvironment in Rare B Cell Lymphomas

Primary central nervous system lymphoma (PCNCL) is a rare type of non-Hodgkin
lymphoma, having an incidence of only 2–3%. PCNSL follows an aggressive clinical course,
with DLBCL being the most common histological type in around 90% of cases [141]. The
comparative analysis between PCNSL and DLBCL suggests that PCNSL is more likely
to be an immunologically deficient tumour, with a reduced number of T cells alongside
M2 polarised macrophages, endothelin B receptor, HLA depletion, PD-L1, and T cell
immunoglobulin, and a mucin-domain containing-3 (TIM-3) [142]. Use of flow cytometry
showed the presence of both M2 and M1 macrophages. Inhibiting macrophages by CSF-
1 receptor blockage led to CNS lymphoma progression, reduced T-cell infiltration and
blocked rituximab efficacy, showing the important role of tumour-associated macrophages
in the CNS lymphoma TME, like in the other tumours [143]. Another analysis of the CNS
lymphomas microenvironment identified two major components: CD8+ T cells and both
M1 and M2 macrophages. The presence of M2 was associated with a higher number of
TIM-3 proteins, T cell suppressors, and greater PD-1 expression. The study also revealed
TGFβR1 as a top upstream regulator of immune evasion in CNS lymphoma [144]. Analysis
of the CNS lymphoma microenvironment is still complex due to the rareness of disease,
and there were no large studies found with complex and broad analysis of TME in CNS
lymphomas, but available studies reveal the important role of macrophages to build up a
prognosis and new possibilities of targeting treatment, focused, for example, on TGF-β or
PD-1 receptors.

Another challenge for clinicians is the rare CD20-negative types of DLBCL. These
constitute 1–2% of B cell lymphomas, with the main presenting subtype being aggressive
plasmablastic lymphoma (PL), observed in approximately 75% of cases. This subtype is
frequently associated with HIV and/or Epstein–Barr virus (EBV) co-infection [145]. One
study has reported significant infiltration of CD163-positive macrophages in 97% of cases,
regardless of EBV status. Additionally, there was low expression of CD8+ cytotoxic markers
such as granzyme B, which correlates with TAM M2 immunosuppressive abilities. EBV-
positive tumours also exhibited twice larger expression of the PD1-L marker, associating
EBV-positive status with a poorer prognosis [146]. Unfortunately, there are few data
available regarding the tumour microenvironment (TME) of plasmablastic lymphomas.
More studies focused on the TME are needed to better understand the processes involved
in this subtype of B cell lymphomas and to identify potential targets for future therapy.

10. Conclusions

This review gives a complex insight into the tumour microenvironment and shows a
rich network of mechanisms which suppress CD8+ cytotoxic T cell type 1. This could be a
reason for the failure of modern DLBCL therapies such as checkpoint inhibitors, CAR-T,
bispecific antibodies, and nanobodies therapies, based on the CD8+ T cell presence in the
tumour niche.

Myeloid-derived suppressor cells cause immunosuppression in the TME by inhibiting
cytotoxic T cells and NK cells, as well as the ability of B cells to present tumour anti-
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gens. MDSCs also stimulate proliferation of T regulatory cells and indirectly suppress
immune response against malignant cells. The ability to transform into tumour-associated
macrophages or neutrophils increases their negative impact.

The role of tumour-associated macrophages is strongly dependent on their polarisation
and factors dominating in the TME. They may transition from anti-tumourous type M1 to
the pro-tumourous M2 type and suppress cytotoxic T cells, promoting tumour proliferation
and dissemination.

Tumour-associated neutrophils can directly induce tumour cytotoxicity or stimulate
NK cell infiltration, but at the same time, the N2 type enhances DNA instability, increases
angiogenesis, and suppresses cytotoxic T cells, which makes them pro-tumourous.

Cancer-associated fibroblasts may remodel matrix and stimulate angiogenesis to promote
tumour dissemination as well as increase the presence of myeloid-derived suppressor cells.

CD8+ T cells classically count as anti-tumourous cells and are a basis of modern
therapies such as immune, CART, or bispecific antibody therapies, but many studies also
show pro-tumourous abilities promoting tumour growth and immunosuppression. More
studies are needed to predict their role in the TME and increase the efficiency of treatment.

Novel drugs, targeting TME as TGF-β or ARG1 inhibitors, are undergoing clinical
trials in cancer patients, but there is a significant lack of trials in lymphoma patients.

Targeting the angiogenesis with vascular endothelial growth factor (VEGF) inhibitors
in DLBCL could be beneficial in use with standard therapy regimens.

The use of different cyclooxygenase (COX) inhibitors, especially COX-2 inhibitors,
could improve patients’ prognosis, but more clinical trials should be carried out before
adding them to the standard regimen schemes.

The tumour microenvironment is a complex mechanism which is ruled by tumour
cells, and there is still a lack of studies of the TME in the haematological tumours such as
DLBCL. More studies should be performed to isolate potential targets for evaluation of
patients’ prognosis and more efficient treatment options.
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