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Abstract: The gut microbiome is a versatile system regulating numerous aspects of host metabolism.
Among other traits, variations in the composition of gut microbial communities are related to blood
lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to
assess the relationships between the composition of the gut microbiome and variations in lipid profiles
among healthy adults. This study used data and samples from 23 adult participants of a previously
conducted dietary intervention study. Circulating lipid measurements and whole-metagenome
sequences of the gut microbiome were derived from 180 blood and faecal samples collected from
eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5%
of the variation in gut microbiome compositions, with higher effects observed for total cholesterol
and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides
correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila
were more abundant among participants with healthier blood lipid profiles. An inverse correlation
with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid
turnover. The observed correlation patterns add to the growing evidence supporting the role of the
gut microbiome as an essential regulator of host lipid metabolism.

Keywords: cholesterol; hyperlipidaemia; gut microbiome; metagenome; Akkermansia muciniphila;
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1. Introduction

Since the introduction of “omics” approaches more than a decade ago, the human
gut microbiome has been recognized as a critical player in the regulation of metabolic
homeostasis in the host [1]. The gut microbiome contributes to numerous aspects of host
metabolism by converting dietary nutrients and producing active metabolites that are
involved in signalling cascades that maintain host metabolic processes [2]. Although the
definition of a healthy gut microbiome probably will never be introduced due to the high
diversity of the system and the complexity of its interactions, specific perturbations in its
composition are linked with phenotypes like metabolic syndrome, obesity, diabetes, and
related metabolic diseases, including cardiovascular diseases [3–5].

Apart from other metabolic traits, the gut microbiome has been implicated in the
development of hyperlipidaemia. Some of the early small-scale association studies have
shown a correlation between decreased gut microbiome diversity and circulating lipid
levels, particularly with triglyceride (TG) and high-density lipoprotein (HDL) levels, and
highlighted a positive relationship between HDL and an abundance of the Clostridium
genus among adults [6,7]. The study by Fu and colleagues [8] described novel associations
between Christensenellaceae, Pasteurellaceae, Eggerthella, Butyricimonas, and circulating TG
and HDL levels. Furthermore, they demonstrated that the gut microbial communities
can explain, on average, 4.5% of the variation in blood lipids independently from such
significant confounders as body mass index (BMI), age, gender, and genetic risk factors [8].
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Since then, multiple gut microbiome taxonomic and functional features have been associ-
ated with blood lipid fractions, including circulating HDL, low-density lipoprotein (LDL)
cholesterol, and TG levels, through cross-sectional studies in cohorts representing the
general population [3,8–13]. Patients with hypercholesterolaemia can be recognized from
normolipidaemic controls on the basis of their gut microbiome profile [5,14,15]. Examples
of bacterial taxa in the human gut microbiome that have shown an association with blood
lipid levels across multiple studies include representatives of the families Bifidobacteri-
aceae, Christensenellaceae, Lachnospiraceae, Veillonellaceae, and Ruminococcaceae, as well as
the phylum Actinobacteria, particularly members of the genus Lactobacillus [10,11,13,15,16].
The study conducted in a Japanese population has pointed out that the gut microbiomes
in patients with hypercholesterolaemia share similar characteristics with that of type 2
diabetes cases. They observed an increased abundance of the genera Bifidobacterium and
Collinsella and a decreased proportion of Bacteroides among patients with either of these
metabolic diseases [17].

Further evidence supporting the connection between the composition of gut microbial
communities and host lipid metabolism comes from studies addressing the metabolic
impact of the consumption of prebiotic and probiotic supplements. The intake of probiotics
predominantly comprising Lactobacillus and Bifidobacterium species significantly reduced
total cholesterol (total Ch) and LDL plasma levels across distinct cohorts [18–21]. Although
some studies show a beneficial impact on HDL and TG levels [18,22,23], the regulatory
effects of probiotics on circulating HDL and TG are less consistent across different co-
horts [19–21]. Several associations between microbial and lipid traits were specific only to
the probiotic intervention group, highlighting the importance of inter-specific interactions
within the complex system of the gut microbiome [23]. Like probiotics, prebiotics are widely
used to modulate the gut microbiome [18,24]. Apart from affecting lipid turnover directly
by regulating the functions of the gastrointestinal tract and decreasing the bioavailability
of lipids from the diet [25,26], soluble fibre reduces total Ch and LDL levels by facilitating
the growth of bacteria that are described as beneficial for metabolic health [25,27]. Bacteria
enriched by fibre consumption include short-chain fatty acid (SCFA) producers such as
Faecalibacterium, Roseburia, Bifidobacterium, and Akkermansia [27,28].

Causal relationships between the gut microbiome and host lipid metabolism have
been confirmed in animal studies. Thus, microbial communities transferred from hyperlip-
idaemic human donors to mice with a depleted gut microbiome replicated a phenotype
characterized by high plasma cholesterol levels in recipient animals [29]. In humans, a
recent Mendelian randomization analysis conducted by Guo and colleagues [30] indicated
a causal link between Actinobacteria, Terrisporobacter, and serum LDL, as well as between
bacteria representing the genus Oscillospira and circulating levels of TG.

Two primary mechanisms through which the gut microbiome can modulate the host’s
cholesterol metabolism are the regulation of bile acid turnover and production of SC-
FAs [31,32]. Microbiome-derived SCFAs regulate multiple aspects of host metabolism.
SCFAs interact with key energy sensors such as AMP-activated protein kinase (AMPK),
regulate angiopoietin-like 4 (ANGPTL4) signalling protein, and bind specific G-protein
coupled receptors (GPCRs), including GPR41 and GPR43. These interactions result in the
modulation of signalling cascades governing appetite and energy intake via gut-derived
hormones like GLP-1, to maintain glucose homeostasis and control lipid turnover [31,33].
Apart from serving as a direct energy source in the gut as well as at the systemic level,
SCFAs are used as substrates in lipogenesis and gluconeogenesis [32,33]. The mechanisms
responsible for the SCFA-mediated control of cholesterol metabolism include the inhibition
of cholesterol transport from the intestine, increased cholesterol uptake by the liver, and
the suppression of the expression of key hepatic cholesterol synthesis regulators [33,34].
Butyrate, acetate, and propionate are three major SCFAs produced by gut bacteria from
dietary fibre [31,35]. Butyrate is predominantly utilized as an energy source by enterocytes.
Propionate is thought to be responsible for the downregulation of cholesterol synthesis,
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particularly the conversion of acetate, one of the major substrates for cholesterol produc-
tion [31,32,35].

Investigations of the relationships between levels of SCFAs in hosts and metabolic
outcomes have thus far produced mixed results [35,36]. For example, some studies in
animal models have shown that the administration of SCFAs reduced cholesterol in
plasma [34,37,38]. Similarly, in human cohorts, the beneficial effects of dietary fibre on
lipid profiles have been attributed to increased SCFA production [27]. However, other
authors have found a positive correlation between SCFAs, obesity measures, and circulating
lipids [5,36,38–40]. Among other findings, positive relationships were found in healthy
women during pregnancy between all three dominant SCFAs, acetate, propionate, and
butyrate, and major plasma lipid fractions, including HDL, LDL, and TG [39]. Since SCFAs
like propionate and acetate play different roles in lipid metabolism, variations in the overall
effect on lipid turnover could be determined by differences in the ratios between specific
SCFAs [35]. It is also possible that the observed correlations vary along with metabolic
backgrounds, changes in physiological requirements, gut microbiome compositions, and
other factors [5,36,39,40].

Most cholesterol is converted into bile acids. Bile acids undergo different modifications
by gut bacteria, like deconjugation, which promotes their retention in the gut lumen and
excretion. The bile acid pool is then replenished by de novo synthesis, depleting cholesterol
levels [31,32]. Secondary bile acids also activate Takeda GPR 5 (TGR5) and farnesoid
X receptor (FXR). While TGR5 regulates GLP-1 production and glucose turnover, the
activation of FXR inhibits cholesterol synthesis in the liver and stimulates cholesterol efflux
back into the gut lumen and its subsequent disposal [29,31].

Other mechanisms involved in gut microbiome-regulated host cholesterol turnover
include the conversion of cholesterol to coprostanol, which is an unabsorbable cholesterol
metabolite, and the direct absorption of dietary cholesterol, as suggested for probiotic
bacteria like Lactobacillus species [41,42].

Although intensive research has resulted in a description of numerous individual-
specific and environmental factors shaping the gut microbiome, only 15% of the variance in
the taxonomic and functional composition of the gut microbiome can be attributed to factors
taken into account thus far [43]. An essential step towards developing microbiome-based
approaches for precision medicine would be to assess patterns replicated across numerous
studies and disentangle the complexity of microbiome-related processes. Despite numerous
studies connecting the gut microbiome and the regulation of blood lipid levels, there is still
high heterogeneity among the observed association patterns [11–14,30,44]. Therefore, our
aim was to assess the relationships between the composition of the gut microbiome and
variations in lipid profiles among healthy adults in a short-term follow-up study.

2. Materials and Methods

Participants and study design. To assess the correlations between serum lipid pa-
rameters and properties of the gut microbiome, we used data and samples donated by
23 participants within the framework of a previously conducted dietary intervention study.
The dietary intervention study was implemented in 2018 from May to August to evaluate
the possible impact of smoked meat products on the gut microbiome.

The study was designed as a randomized crossover trial with three parallel interven-
tion groups, each assigned a different sequence of three study products: salmon (delivered
fresh), smoked salmon, and lean smoked pork provided by a certified food supplier. The
study lasted 11 weeks. The first two weeks served as an adaptation period. The adaptation
period was followed by three week-long intervention periods separated by two washout
periods lasting two weeks each. The last intervention period was followed by a two-week
post-intervention washout period.

The study involved healthy free-living volunteers who were randomly divided into
three groups, each starting with a different product (salmon, smoked salmon, or pork),
and then crossing over to the next product so that the three intervention periods covered
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the three types of intervention diet concurrently. The study participants were given seven
portions containing 150 g of the respective product at the beginning of each intervention
period and instructed to eat a portion per day with their habitual diet for seven days.
The products were stored in household freezers. The participants prepared fresh salmon
at will at home. Besides avoiding cooking over an open fire, the cooking method was
not specified. The participants were also asked to maintain their usual diet and lifestyle
habits. The background diet was not controlled. A few restraints included eating fish
during the intervention week and smoked, smoke-flavoured, or grilled products during the
study period.

An invitation to participate in the dietary intervention study was distributed by
approaching personal contacts and through social networks like Facebook. Recruitment was
carried out in two rounds, separated by a three-week delay during May and at the beginning
of June 2018 in collaboration with the Genome Database of the Latvian population (LGDB),
which provided resources for data and sample management [45]. Participants from both
study recruitment rounds followed the same protocol. The participants were required to be
18 to 64 years old and have no constraints on the consumption of animal products. The
exclusion criteria were acute gastrointestinal, liver, renal, or oncological diseases, metabolic
diseases such as diabetes mellitus or autoimmune diseases, pregnancy or breastfeeding,
use of microbiome-altering medication (antibiotics or PPI) within the past two months, or
diarrhoea within the past week. In total, 32 people responded to the invitation, and 26
fulfilled the inclusion/exclusion criteria. Two participants withdrew during the adaptation
period due to health problems, and one participant left due to personal schedule changes
that were incompatible with the requirements of the study. This left 23 participants, from
which 21 participants completed all eight visits. Two women left the study after the fifth
and seventh visits. The reasons for withdrawal were acute upper respiratory infection
and enterovirus infection, respectively. The data obtained from the completed visits were
retained for statistical analysis.

Sample processing. In total, 180 paired whole blood and faecal samples were collected.
The samples were obtained during eight visits, distributed over an 11-week study period,
according to the following schedule: the first visit before the two-week run-in period,
followed by six visits scheduled before and after each of the three one-week intervention
periods, separated by two-week washout periods, and the eighth final visit after the
last two-week washout period. General phenotypic data, including age, body height,
and weight, were collected using questionnaires developed by the LGDB and given to
participants at the initial study visit [45]. Data on habitual diets were collected through
food frequency questionnaires filled out during recruitment. The collected data were
merged into 13 food categories: red meat (beef and pork), poultry, fish (including other sea
products), eggs, dairy products, vegetables, potatoes, fruits, cereals (including bread, pasta,
rice, and buckwheat), legumes, sugary foods (candies, chocolate, and cakes), sweetened
pastries (including cookies), and beverages (including water consumption). The frequency
of product use was transformed into ordinal data as follows: not consumed (1), consumed
once or twice per week (2), three to four times per week (3), five to six times per week (4),
and more than seven times per week (5). Five categories were used to characterize the
volume of consumed beverages: less than three glasses (1), three to five glasses (2), six to
eight glasses (3), more than seven glasses (4), and more than two litres of liquids consumed
per day (5).

To obtain lipid profiles, whole blood samples were collected in EDTA vacutainer tubes
without an anticoagulant in the morning of each visit after an overnight fast. The certified
biochemical laboratory performed measurements of serum lipid levels in millimoles per
litre (mmol/L) using standard colourimetric assays [45]. Non-HDL cholesterol (Non-HDL
Ch) levels were calculated by subtracting the HDL from the total Ch.

Faecal samples were collected by the participants at home with a provided sam-
ple collection kit following written instructions. The collection kit contained standard
polypropylene faecal collection tubes without a preservation solution (ThermoFisher Scien-
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tific, Waltham, MA, USA). The faecal samples were collected as closely as possible to the
scheduled blood sample collection visit. The participants were asked to freeze and store the
samples in household freezers until transportation on cold elements to the laboratory for
long-term storage at −80 ◦C. Microbial DNA isolation was performed with a FastDNA Spin
Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) using ≈ 150 mg of the sample. DNA
samples were quantified with a Qubit 2.0 and Qubit dsDNA HS assay kit (ThermoFisher
Scientific, USA), and the average DNA yield was 172.2 ± 83.7 ng/µL. Metagenome libraries
were prepared using an MGIEasy Universal DNA Library Prep Set with 250 ng of DNA as
the sample input (MGI Tech Co., Ltd., Shenzhen, China). The quality of the DNA libraries
was assessed with a 2100 Bioanalyzer instrument using an Agilent High Sensitivity DNA
Kit (Agilent, Santa Clara, CA, USA). The composition of the gut microbiome was deter-
mined with the paired-end whole-metagenome sequencing approach on a DNBSEQ-G400
instrument following the PE100 protocol with a DNBSEQ-G400RS High-throughput Se-
quencing Set (FCL PE100) (MGI Tech Co., Ltd., China). Background contamination was
tested throughout the process using a blank control containing ultrapure water. The total
raw read count for the blank control was 3820, including 593 on-target reads. The quality
of the library preparation and sequencing steps were checked using the ZymoBIOMICS
Microbial Community DNA Standard (Zymo Research, Tustin, CA, USA).

Data processing. On average, 51,058,661 ± 7,155,819 raw sequencing reads were
produced per sample, and 42,771,617 ± 6,452,084 reads per sample were retained after
quality control with Trimmomatic tool v.0.38. (read ends clipped if average quality score was
<20 within the 5 bp sliding window) and human genome sequence decontamination with
Bowtie2 v.2.3.5.1 and SAMtools v.1.7 using the GRCh38 reference genome. A taxonomic
identity assignment of the filtered reads ≥ 100 bp in length was performed with the
Kraken2 v.2.0.8-beta classifier using the RefSeq database examining 35 bp k-mers. Only
reads achieving a Kraken2 classification confidence score of 0.5 or higher were considered
successfully classified and processed with Bracken v.2.5. for an estimation of the relative
abundance of each species and a re-estimation of abundances at higher taxonomic levels
(e.g., summing up reads representing the same genus).

Statistical analysis. The median of 1000 reads was used as a cut-off value for taxa
to be retained for statistical analysis in the RStudio environment. The alpha diversity of
the gut microbiome was characterized using the Shannon index and the effective number
of species, estimated as the exponential of the Shannon index using read counts [46].
The within-subject correlation coefficients (CVws) were calculated using the “root mean
square approach”. To account for sequencing depth differences among the samples, before
continuing with the statistical analysis of the compositional data, the read counts for the taxa
were normalized using centred log-ratio transformation. Sample distribution regarding the
microbiome composition and lipid profiles was characterized using principal component
analysis (PCA), calculated using the R “stats v.4.0.2” prcomp function, and biplots were
created using the package “factoextra v.1.0.7” [47]. The lipid measurements were calculated
as z-scores before PCA for normalization, and “high”/”low” categories were defined
based on reference thresholds for the healthy lipid range: TCh < 5.0 (mmol/L), HDL ≥ 1.2
(mmol/L), non-HDL Ch ≤ 3.9 (mmol/L), LDL < 3.0 (mmol/L), and TG < 1.7 (mmol/L).
Differences in the beta diversity between the sample categories were assessed with PCA and
the adonis function in the package “vegan v.2.5-7” (999 permutations, strata = “subject” for
repeated measures). The proportion of variation in the relative abundance of taxa explained
by the different variables was estimated with the package “variancePartition v.1.20.0” [48].
Both the PCA and variation partitioning analysis were completed using follow-up data,
which included all eight samples collected from each participant. Correlations between the
taxa relative abundances and the follow-up serum lipid measurements were calculated with
packages accepting repeated measures “rmcorr v.0.4.1” (repeated measures correlation)
and “MaAsLin2 v.1.4.0” (Microbiome Multivariable Associations with Linear Models 2),
which also allows for covariate adjustments through a mixed-effect model [49,50].
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The average relative abundances of the taxa between the two categories defined by
“high”/”low” lipid levels were compared using the Wilcoxon rank sum test in “rstatix
v.0.7.2” and “MaAsLin2 v.1.4.0“. The Wilcoxon rank sum test was also used to assess the
differences in age, BMI, and average serum lipid measures between men and women.
The Wilcoxon signed-rank test in “rstatix v.0.7.2” was employed for paired samples to
assess the potential impact of the consumption of target products on the taxa relative
abundances and serum lipid levels. The test compared samples collected before and
after each intervention week. Correlations between the average taxa relative abundances
and phenotypes were calculated using Spearman correlation in “Hmisc v.4.4-2”, “rstatix
v.0.7.2”. Confidence intervals (CI 95%) for Spearman’s rho were estimated in “DescTools
v.0.99.50“using function “SpearmanRho”. Kendall rank correlation was used to compare the
ordinal data with continuous variables in “rstatix v.0.7.2” in order to estimate correlations
between the habitual diet-related factors, and average the relative abundance of the taxa and
mean serum lipid levels. p-values were corrected for multiple testing using the Benjamini–
Hochberg method. The 95% prediction intervals were calculated following the formula:

y0 ± tα/2,df = n − 2 ∗ SE (1)

where standard error (SE) is:

SE = SEyx

√(
1 + 1/n+(x0 − xav)

2/SSx

)
(2)

The “y0” is the forecasted value for “x0”, “x0” is the median value of the relative
abundance of the taxon, “xav” is the average relative abundance of the taxon, “t” is a critical
value of α/2 (α = 0.05), “df” is the degree of freedom calculated as “n − 2”, where “n” is
the number of subjects, “SEyx” is the SE of given x and y values and “SSx” sum of squares
of deviations of data points “xav”. Prediction intervals were calculated in “MS excel” using
average values of variables extrapolated from longitudinal data.

Graphs were created with the “ComplexHeatmap v.2.7.4”, “ggplot2 v.3.4.2”, “ggpubr
v.0.6.0”, and “factoextra v.1.0.7” packages.

3. Results
3.1. Participant Description

From the 23 participants, 7 men and 14 women completed all eight visits, and two
women completed seven and five visits, respectively. The total data pool contained
180 samples. The participants had a mean BMI slightly above the recommended range
(26.3 ± 5.01 kg/m2) and were aged between 27 and 62 years, with the women being, on
average, six years older than the men (Table 1). Among all study participants, 13 had in-
creased mean circulating total Ch levels (≥5.0 mmol/L). The average circulating LDL levels
were above the recommended threshold (<3.0 mmol/L) for 14 participants, but only four
participants (two men and two women) had increased serum TG levels (≥1.7 mmol/L).
The women had, on average, higher total Ch levels than the men. The levels of LDL,
non-HDL Ch, and HDL were also higher among the women, but the differences were
not significant. In contrast, the average TG levels tended to be slightly higher in the men
than the women (Table 1). The individual-specific serum cholesterol parameters remained
relatively stable over the study period (from CVws 6.3% for HDL to CVws 11.1% for LDL),
but there was notable variation in the circulating levels of TG (CVws 27.8%; Figure S1).
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Table 1. General characteristics of the participants involved in the study.

Characteristic Mean ± SD Mean ± SD (Men/Women) p-Value

Men/women 7/16 - -
Age (years) 40.3 ± 10.8 36.3 ± 6.3/42.0 ± 12.0 >0.05
BMI (kg/m2) 26.3 ± 5.01 26.7 ± 4.5/26.1 ± 55.3 >0.05

Blood lipid profile
Total Ch (mmol/L) 5.15 ± 0.90 4.5 ± 0.85/5.43 ± 0.79 0.018
HDL (mmol/L) 1.52 ± 0.43 1.3 ± 0.19/1.61 ± 0.47 >0.05
LDL (mmol/L) 2.95 ± 0.78 2.6 ± 0.69/3.11 ± 0.79 >0.05
Non-HDL Ch (mmol/L) 3.63 ± 0.93 3.20 ± 0.90/3.82 ± 0.90 >0.05
TG (mmol/L) 1.23 ± 0.59 1.30 ± 0.90/1.20 ± 0.42 >0.05

Self-reported data on age, body height, and weight were derived from questionnaires completed during recruit-
ment. Blood lipid measurements were derived from samples donated during each visit. Differences between
men and women were assessed with the Wilcoxon rank sum test, and p-values < 0.05 were assumed to be
significant. Total Ch—total cholesterol, HDL—high-density lipoprotein, LDL—low-density lipoprotein, non-HDL
Ch—calculated as HDL subtracted from total Ch, TG—triglyceride, SD—standard deviation.

When taxa with a median number of reads of less than 1000 were removed, 24 families,
40 genera, and 69 species of bacteria and archaea remained to investigate the relationships
between the lipid profiles and the gut microbiome composition of the participants. The
average inner or alpha diversity of the gut microbiome of the participants is expressed
as the effective number of species, which was 20.82 ± 4.41, and the average Shannon’s
diversity index was 3.01 ± 0.22. The variation in alpha diversity over the study period was
moderate, with CVws for an effective number of species of 13.8% and 4.8% for Shannon’s
diversity index (Figure S2). Participant-related cofactors like gender, BMI, and age showed
no correlation with either the effective number of species or Shannon’s index (Figure S3).
The participants with high serum HDL levels (HDL ≥ 1.2 mmol/L) tended to have more
diverse microbial communities according to Shannon’s index (3.06 ± 0.144 vs. 2.86 ± 0.24),
although the differences were not significant after multiple testing corrections (p = 0.046
vs. padj > 0.05; Table S1). There were no differences in the average alpha diversity between
participants with hypercholesterolaemia or increased TG levels (Tables S1 and S2; Figure S4).
Likewise, Spearman’s correlation and repeated measures correlation showed no association
between the alpha diversity and average lipid measurements of the participants or the
measurements taken at each visit (Table S1 and Figure S5).

As expected, a visual examination of the data separation using PCA of the gut micro-
biome composition at the species level revealed a sample clustering for the participants in
agreement with the well-known fact that the gut microbiome is highly individual-specific
(proportions of variation explained by principal components (PC) PC1 and PC2: 21.2%
and 11.4%, respectively; Figure S6). The top contributing species explaining the variability
among the samples were Methanobrevibacter smithii, Streptococcus lutetiensis, Akkermansia
muciniphila, and Bifidobacterium adolescentis, which contributed the most to PC1 (37.8%,
11.7%, 10.0%, and 6.05%, respectively), while Adlercreutzia sp. 8CFCBH1 and Bacteroides
caccae contributed 33.6% and 8.6% to PC2, respectively (Figure 1 and Table S3). At higher
taxonomic levels, the majority of variation among subjects was explained by the genera
Methanobrevibacter (contributing most to PC1: 60.7%) and Adlercreutzia (contributing most to
PC2: 59.5%), and the families Methanobacteriaceae and Akkermansiaceae (contributing 76.7%
and 72.1% to PC1 and PC2, respectively; Table S3, Figures S6 and S7). Although the first two
PCs in the PCA based on the lipid profiles explained a higher proportion of variance than
the microbiome data (PC1: 23.9%; PC2: 62.5%), the subject-specific clustering of samples
was less pronounced than the microbiome-based patterns. The strongest contributor to PC1
among the lipid parameters was non-HDL Ch (31.5%), followed by LDL (28.2%) and total
Ch (25.9%), whereas HDL was the most prominent contributor to PC2 (70.4%; Figures 1
and S8).
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In concordance with the PCA analysis, variance partitioning supported the host
itself being the most potent factor shaping the composition of the gut microbiome, with an
average of 59.3% of the species level variance explained. The average variation explained by
the summary effect of lipid variables was 4.5% in the longitudinal data set. The contribution
of cholesterol-related parameters ranged from 1.6% for total Ch to 1.2% for HDL, whereas
the TG levels explained a negligible 0.2% of the total bacterial variance. The intervention
diet also had a low impact, explaining 0.3% of the total variation in the structure of the gut
microbiome. On the contrary, the habitual diet together explained, on average, 43.6% of
the variance in the relative species abundance, with the highest proportion of variation
related to the consumption of fruits (proportion of variation explained: 4.8%). However,
a substantial proportion of variance was attributable to factors unaccounted for within
the analysed models (Figure 2). The variables included in the variance partitioning of the
microbiome composition showed similar contribution patterns at the genus and family
levels (Figure S9).

3.2. Interaction of Lipids, Bacteria, and Individual Characteristics

In general, the participant-related factors had no significant impact on the average
lipid levels of the participants. The only variables that marginally correlated with HDL
and non-HDL Ch levels were BMI and inclusion of fish products in the habitual diet
(Spearman’s rho = −0.46, p-value = 1.40 × 10−6, padj. > 0.05; Kendall’s tau = −0.35,
p-value = 0.041, padj. > 0.05). The serum total Ch tended to increase with age, though
the correlation was non-significant (Figure 2).

A PCA analysis was performed with the lipid measurements as categorical variables
to explore whether variation in the compositional structure of the gut microbiome is
sufficiently pronounced in the group participants based on their average blood lipid levels.
For this analysis, the standard fasting cut-off values defined for serum lipids in routine
testing were used to ascribe participants to the “high” or “low” lipid group according to
their average serum lipid measurements. Although there was some notion of separation
between groups with “high” or “low” levels of blood HDL based on their gut microbiome
profile, it was not strong enough to indicate significant differences in gut microbiome
composition between the two groups. The tested grouping patterns explained 7% of the
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variance at the species level (p = 0.02), 10% at the genus level (p = 0.07), and 10% at the family
level (p = 0.05). There was no evidence of microbiome-based clustering of participants with
differences in other lipid-related measurements (Figure S10).
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Figure 2. Correlation of participant-related covariates with microbiome composition variance and
lipid profiles. (A) Variation in gut microbiome composition attributable to lipid parameters and
major confounders. (B) The variance proportion explained by the subject-related factors, including
habitual diet. The non-HDL Ch measurements were excluded from both models due to the high
correlation rate with other lipid parameters. The collinearity scores were 0.87 and 0.91 for the first and
the second model, respectively. The residual group comprises undefined contributors to the variance.
Variance partitioning included a complete set of samples for each participant. (C) Heatmap showing
a correlation between average lipid measurements and participant-related variables. **—unadjusted
p-values < 0.05. Total Ch—total cholesterol, HDL—high-density lipoprotein, LDL—low-density
lipoprotein, TG—triglycerides, and BMI—body mass index.

Association patterns between the bacterial taxa and lipid profiles were described in
two steps. The first step was to estimate correlation patterns using the follow-up data
from the eight study visits. The second step included correlation analyses based on the
average lipid measurements and average relative abundances of taxa calculated for each
participant from the follow-up data. A total of 29 species, 20 genera, and 13 families showed
a marginal correlation with circulating lipid levels. However, none of these associations
retained significance after correction for multiple tests, and the described results are based
on raw p-values. The association results are presented in Figure 3 and Table S4.
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Figure 3. Correlation between measurements of serum lipids and relative abundance of microbial
taxa representing gut microbiome. Correlations were estimated using cross-sectional data with
(A) Spearman correlation followed by Maaslin2’s linear models, (B) unadjusted and (C) adjusted
for cofactors age, BMI, and gender. For estimates based on the follow-up data set, analysis methods
included (D) repeated measures correlation followed by Maaslin2’s linear models, (E) unadjusted
and (F) adjusted for cofactors. The colours of the cells correspond to Kendall’s tau, and asterisks
indicate p-values. The colours of the annotation bar show relatedness between taxa. **—p < 0.05;
***—p < 0.01; s—species; g—genus; f—family.

Several taxa showed consistent correlation patterns across both the cross-sectional
and follow-up data sets. The relative abundance of Odoribacter splanchnicus from the
Odoribacteraceae family positively correlated with serum LDL and non-HDL Ch levels
(Table S4). The tendency of O. splanchnicus to be more common among participants with
high LDL measurements was supported by several tests. The species O. splanchnicus was
positively correlated with sample-to-sample LDL measurements (rrm = 0.197, Figure 3D;
coef = 0.351, Figure 3E) and tended to be more abundant among participants with higher
average levels of LDL (Figure 3C). These correlations retained significance after adjustments
for age, gender, and BMI (follow-up data coefadjust = 0.429, Figure 3C; cross-sectional data
coefadjust = 0.388, Figure 3F). Two species, Parabacteroides distasonis and Parabacteroides
sp. CT06, also tended to be increasingly abundant with higher serum cholesterol levels,
including HDL (Table S4). The association between the abundance of P. distasonis and
increased circulating cholesterol was consistent across both data sets (Figure 3C–F), whereas
Parabacteroides sp. CT06 correlated with fluctuations in serum cholesterol levels in the
follow-up data (Figure 3D,F). The correlations between LDL and P. distasonis remained
significant after including cofactors in the association analysis using follow-up and average
measurements (coefadjust = 0.365 and coefadjust = 0.652, respectively, Figures 3C and 3F).

Negative correlations with the serum total Ch, LDL, and non-HDL Ch levels were
observed for species from the genera Streptococcus and Lactococcus, which belong to the
Streptococcaceae family (Table S4). Lactococcus lactis was negatively associated with the
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follow-up and average measurements of LDL and non-HDL Ch in serum. A negative
association with sample-to-sample fluctuations in LDL levels was retained after adjusting
for age, BMI, and gender in the analysis (coefadjust = −0.363; Figure 3F). After cofactor
adjustment, a positive correlation was revealed between the average abundance of L. lactis
and serum HDL (coefadjust = 0.544; Figure 3C). The abundance of Streptococcus thermophilus
showed a negative correlation with sample-to-sample fluctuations in cholesterol levels
in the follow-up data set (Figure 3D–F). The adjusted correlation remained significant
(coefadjust = −0.717 with total Ch levels), but we cannot exclude the impact of cofactors
since S. thermophilus was more abundant among older participants (linear model coef = 0.65;
Table S5). S. lutetiensis was positively associated with average serum lipid levels, including
TG (Figure 3A–C).

The species Bifidobacterium longum and B. adolescentis were associated with health-
ier lipid profiles (Table S4). B. longum negatively correlated with non-HDL Ch levels
(coefadjust = −0.383; Figure 3F), and B. adolescentis positively correlated with average HDL
levels (Spearman’s rho = 0.495; Figure 3A). The participants with a lower BMI had a signifi-
cantly higher B. adolescentis abundance, which may have affected the association patterns
(Table S5). The recently classified species Massilistercora timonensis was relatively enriched
in samples with lower cholesterol levels, particularly non-HDL Ch (coef = −0.224 and
coefadjust = −0.214; Figure 3E,F). Furthermore, the species was more abundant among
participants characterized by lower average serum TG levels, independently of cofactors
(coefadjust = −0.490; Figure 3A–C and Table S4).

The participants with lower average circulating cholesterol levels had a higher relative
abundance of probiotic A. muciniphila. This species positively correlated with average
serum HDL levels (Spearman’s rho = 0.599; Figure 3A,B). Yet, when participants’ age, BMI,
and gender were taken into consideration, the abundance of A. muciniphila negatively
correlated with total and LDL cholesterol levels in serum (Figure 3C and Table S4).

Species from the family Lachnospiraceae, including Roseburia hominis, Lachnospira eligens,
Lachnospiraceae bacterium, and Lachnospiraceae bacterium Choco86, correlated with decreased
levels of circulating cholesterol. The well-known butyrate-producer R. hominis was associ-
ated with lower levels of total circulating cholesterol and non-HDL Ch in the follow-up
data set, independently of the participants’ age, BMI, or gender (coefadjust = −0.290 and
coefadjust = −0.267, respectively; Figure 3F and Table S4). However, the negative asso-
ciations with total Ch, non-HDL Ch, and HDL observed for L. eligens, L. bacterium, and
L. bacterium Choco86 lost significance after adjustment for participant-specific cofactors,
particularly gender (Figure 3D–F and Table S4). These species tended to be more abundant
among men, who were characterized by lower serum cholesterol levels than women, with
significant differences observed for L. bacterium (Table S5). Likewise, adjustments for cofac-
tors, predominantly gender, removed the correlation between lipid levels and the relative
abundance of Roseburia intestinalis, Intestinimonas butyriciproducens, Christensenella minuta,
and Bacteroides dorei (Figure 3 and Table S4). The abundances of these species differed
significantly between men and women (Table S5).

Apart from the described species, the taxa associated with unfavourable serum choles-
terol levels were the genus Duncaniella and several species, including Alistipes communis,
Alistipes megaguti, and Butyricimonas faecalis. The taxa that inversely correlated with circu-
lating lipids included the family Peptostreptococcaceae, the genus Escherichia, and the species
M. smithii and Bacteroides fragilis (Table S4).

In general, there were fewer associations with TG levels in the blood. Anaerostipes
hadrus had the most consistent positive correlation with TG levels. The model based on
the average measurements adjusted for cofactors showed the strongest association for this
species (coefadjust = 0.284; Figure 3F). Bacteroides uniformis positively correlated with short-
term changes in serum TG levels (Figure 3D–F). Although adjustment for cofactors did
not remove the association, the abundance of B. uniformis differed between genders, which
could have affected the results (Table S5). Besides a negative correlation with cholesterol
levels, the genus Eggerthella was also inversely correlated with TG levels (Figure 3B–F).
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3.3. Impact of Diet

Diet is a potent modulator of the gut microbiome and can affect serum lipid pro-
files. Therefore, we also checked for potential confounding effects of habitual diets and
the introduction of additional meat products on the correlations between the microbial
communities and circulating levels of lipids. As described previously, consuming more
fish and sea products lowered serum cholesterol levels, particularly serum non-HDL Ch
(Kendall’s tau −0.22, p-value = 0.041; Figure 2). The daily consumption of salmon as a part of the
dietary intervention resulted in mildly lower levels of serum TG and LDL (average TG levels of
1.30 ± 0.83 mmol/L and LDL levels of 3.01 ± 0.82 mmol/L in reference to 1.05 ± 0.46 mmol/L
and 2.85 ± 0.79 mmol/L in samples after intervention, p < 0.05; Figure S11).

Habitual diet explained a substantial proportion of the participants’ total gut microbial
community composition variation. However, fish and sea products were not among the
top contributors (proportion of variation explained: 1.5%; Figure 2). However, the Kendall
correlation analysis indicated that consuming fish products may have affected the relative
abundance of several taxa that were previously linked with variations in serum lipid
levels. Among these were L. bacterium, S. salivarius, A. muciniphila, and bacteria from
the genus Lactobacillus (Figure S12). A more frequent consumption of dairy products
correlated with a higher relative abundance of C. minuta and I. butyriciproducens, whereas
M. timonensis showed an inverse correlation with dietary fruits and legumes. Species from
the Bacteroidaceae family tended to be more abundant among subjects preferring sugary
foods (Figure S12).

An initial visual check for data clustering with PCA comparing the pre- and post-
intervention samples showed no intervention-related patterns in the gut microbiome
(maximum Adonis R2 = 0.011), which is in line with the weak effects revealed by the
variation partitioning analysis (Figures 2 and S13). Together, these results indicate that
the consumption of the three intervention food products did not have notable effects
on the general taxonomic structure of microbial communities. Variations in the relative
abundance of individual microbial taxa in response to the consumption of fish or meat
were assessed with Maaslin2, including pre- and post-intervention samples for each study
product with the subject as a random effect grouping parameter. The consumption of the
intervention food products affected the relative abundances of six lipid-associated species,
R. intestinalis, R. hominis, L. bacterium Choco86, C. minuta, and B. adolescentis, as well as the
genera Faecalibacterium, and Bacteroides, and the families Peptostreptococcaceae, Eggerthellacea,
and Akkermansiaceae (Figure S14).

However, the strength of the observed correlations was generally relatively low, and
the data exhibited high variability. Therefore, to indirectly address the uncertainty of these
observed correlations, prediction intervals were calculated for the blood lipid levels fore-
casted based on the relative abundances of taxa associated with lipid parameters (Figure 4
and Table S4). The 95% prediction intervals were characterized by a high bandwidth and
relatively homogeneous patterns among the taxa. This supports the idea that, apart from
other factors, at least some of the associations could be modulated by confounders, such
as gender.
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be found with 95% confidence. The point indicates the lipid level forecasted for the median relative
abundance of the respective taxon. Prediction intervals for non-HDL Ch levels exhibited similar
patterns to those observed for LDL and, therefore, are not included in this plot (Figure S4). PI—95%
prediction interval.

4. Discussion

The current short-term longitudinal study describes the correlation between gut
microbiome composition and blood lipid patterns in healthy adults. The investigation
using a data pool comprising gut microbiome taxonomic profiles and lipid measurements
collected from 23 participants confirmed that features of the human gut microbiome vary
with subject-specific lipid profiles.

4.1. Characterization of Gut Microbiome Profiles

Circulating levels of lipids are determined by numerous host-related and environmen-
tal factors like genetics, gender, smoking status, BMI, physical activity, and diet [3,51]. More
recently, the multifunctional gut microbiome ecosystem has been described as one of the crit-
ical regulators of complex metabolic networks that maintain host lipid turnover [8,11–14].
A high overall richness of the gut ecosystem is typically associated with improved metabolic
health, whereas patients with obesity, type 2 diabetes, or metabolic syndrome have reduced
bacterial diversity in their gut communities [5,14,52]. Similar trends have been found in
relation to circulating lipid levels. Patients with hyperlipidaemia have been described as
having less diverse microbiomes compared to normolipidaemic controls [5,14,52]. Individ-
uals with healthier blood lipid profiles, namely lower LDL and TG levels and higher HDL
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levels, also had richer gut microbial communities [8,12,14,17]. However, not all studies
agree on such correlations [9,15,36]. One of the explanations could be that the composition
of the community and the presence of particular members such as SCFA producers may
be functionally more relevant than the overall diversity of the gut microbiome [36]. We
observed no significant relationships between indices describing microbial diversity and
lipid levels among healthy participants with normal or moderately increased blood lipid
levels. Nevertheless, participants with higher average HDL levels also tended to have
a more diverse microbiome than those characterized by lower average circulating HDL
levels, which aligns with observations in population-based Dutch cohorts [8,12].

The study in the Dutch cohort by Fu et al. [8] revealed that approximately 6% of the
variance in circulating lipid levels could be attributed to the gut microbiome composition,
independent of major confounders like age, gender, and host genetic factors. The gut
microbiome explained approximately 4% of the variation in HDL and 6% in TG levels,
with a much lower proportion accounting for total Ch and LDL levels (0.7% and 1.5%, re-
spectively) [8]. A variance partition analysis yielded similar results within our small study
cohort, with an average of 7% variance in the gut microbiome related to lipid levels. How-
ever, we saw weaker relationships between HDL and TG levels and the gut microbiome
composition. There was a high percentage of variance in the gut microbiome that was
explained by unknown factors and by subject-specific factors other than age, gender, and
BMI, and even habitual diet-related components. Such confounders left unaccounted for
could have affected our estimates. Differences in the estimated contribution to the variance
in the gut microbiome could be due to genetic factors, population-specific lifestyle-related
factors like diet, or distinct features of the gut microbiome itself [6,8,53].

Subjects with hyperlipidaemia can be differentiated from the normolipidaemic pop-
ulation based on the composition of their gut microbiome communities [5,13,14,52]. We
observed some clustering between participants assigned to “low” or “high” serum HDL
groups. Otherwise, there were no significant differences in the general patterns of gut
microbial core communities between participants with high or low circulating lipid mea-
surements. Within the small cohort, substantial subject-specific variation might have
obscured sample clustering between groups with “high” and “low” levels of lipid variables.
The total Ch levels were, on average, only borderline-high among participants within the
“high” lipid group. Therefore, cases were probably more similar to controls in terms of the
gut microbiome than patients diagnosed with hyperlipidaemia would be [5]. However,
other studies involving individuals with hyperlipidaemia also found no notable differences
in the overall taxonomic structure of the gut microbial communities between cases and
controls [9,15,17]. A dietary intervention study investigating the effects of saturated fats
and proteins on the human gut microbiome indicated that a high alpha diversity correlated
with a more stable and impact-resistant gut microbial community structure [54]. Two of
the three studies in which no segregation based on microbiome structures was observed
between cases and controls also found no significant differences in alpha diversity between
hyperlipidaemic and normolipidaemic individuals [9,15].

4.2. Taxa Associated with Serum Lipid Levels

Although no relationships were observed between the general composition of the
gut microbiome and circulating lipids, the relative abundances of several taxa correlated
with serum cholesterol and triglyceride levels. Most associations were detected at the
species level, and correlations at the genus and family levels mainly reflected those of
specific species.

Among the taxa associated with lipid levels were bacterial species capable of SCFA
production. SCFAs are major metabolites of the gut microbiome, produced from the fer-
mentation of dietary fibre and other non-digestible polysaccharides [31,35]. A high rate
of SCFA production in the intestines is generally considered as health-promoting [31].
Microbial SCFAs interact with the host metabolism by lowering food intake, metabolizing
and promoting lipid excretion, and regulating lipogenesis, cholesterogenesis, and gluconeo-
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genesis [32–35]. Moreover, SCFAs can improve the function of the gut barrier, reduce local
inflammation, as well as interact with the immune system on the organism level, which
indirectly contributes to the host’s metabolic health [35].

SCFA producers correlating with lipid levels in the current analysis were species from
the genera Alistipes, Anaeorostipes, Bifidobacterium, Butyricimonas, Intestimonas, Roseburia,
Odoribacter, Lachnospira, and unclassified Lachnospiraceae. The representatives of these gen-
era have been linked with host metabolic traits, like obesity and hypercholesterolaemia, in
previous studies, but with inconsistent results [6,11,13,35,55–57]. For the majority of SCFA
producers, we observed positive correlations with healthy lipid profiles characterized by
lower serum LDL, non-HDL-Ch, and TG levels. A higher abundance of the Lachnospiraceae
family has been consistently linked with improved lipid profiles and lower obesity-related
markers in several studies among healthy adults [11,13,55–57]. Gargari et al. observed
improvements in serum lipid profiles and SCFA levels among hyperlipidaemic children
and adolescents after eight weeks of hazelnut intake. The beneficial changes in metabolic
features were accompanied by an increased abundance of SCFA producers including Lach-
nospiraceae, particularly Roseburia [52]. Apart from butyrate, Roseburia produce conjugated
linoleic fatty acid, which also contributes to lipid turnover regulation [6]. Similarly, Bifi-
dobacterium has been correlated with lower plasma LDL and TG levels [3,13], which is in
line with our findings. The administration of Bifidobacterium-based probiotics significantly
reduces serum cholesterol and triglyceride levels in human cohorts [6,31,58]. However, the
abundance of the Bifidobacterium genus was higher among Japanese patients with hyperlip-
idaemia and type 2 diabetes [17]. Members of this genus also produce lactate and acetate
in addition to butyrate, and modify the bile acid pool [59]. Some Bifidobacterium species can
also directly interact with dietary cholesterol and produce cholesterol sulphate, although
the role of this metabolite in the context of hyperlipidaemia is unknown [42].

The species O. splanchnicus and A. hadrus were more abundant in samples with higher
LDL, non-HDL Ch, and TG levels. The representatives of the genus Odoribacter were
enriched among subjects with abnormal lipid profiles compared to normolipidaemic ones in
other studies [5,11]. A higher Odoribacter abundance among hypercholesteraemic men was
accompanied with increased levels of isobutyric acid compared to controls [5]. Isobutyric
acid levels were associated with increased serum lipid levels among pregnant women [39].
The gut microbiome enrichment in Anaerostipes has been related to an increased risk
of obesity in children which corresponds with A. hadrus being more abundant among
participants with higher TG levels in our study [12,42]. However, a study including over
800 participants described a strong negative correlation between the relative abundance
of the genus Anaerostipes and blood TG levels [11]. Of note, Anaerostipes was negatively
correlated with LDL levels among men, but not among women in a Japanese cohort [9].
Both of the species O. splanchnicus and A. hadrus produce acetate and propionate [60].
Theoretically, switching towards a higher production of acetate could explain the increased
lipogenesis and cholesterogenesis, resulting in higher serum lipid levels [35,61]. Odoribacter
along with Alistipes are among the few taxa capable of producing sulfonolipids, which
may be involved in triggering inflammation [62]. Anaerostipes utilizes lactate and succinate
and could co-occur with taxa producing other SCFAs [63]. However, causal mechanisms
linking both species with the regulation of serum lipid levels remain obscure.

We were able to confirm positive associations with favourable serum lipid composi-
tions for A. muciniphila and C. minuta. Both species have been considered as next-generation
probiotics for the treatment of metabolic diseases [31,64]. Mucin degrader A. muciniphila
is intensively researched due to its health-improving effects, including reduced adipos-
ity, improved glucose metabolism, improved gut barrier integrity, and anti-inflammatory
and anti-ageing effects [65]. This species also participates in the regulation of the host’s
cholesterol metabolism. Healthy individuals with a higher abundance of Akkermansia have
been observed to have healthier circulating lipid profiles, while the genus was found to be
depleted in hyperlipidaemic patients [8,52,56]. A study involving dyslipidaemic patients
suggested a potentially causal relationship between Akkermansia and abnormal lipid levels
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among women, but not in male participants [9]. When used as probiotic supplement,
Akkermansia decreased fat mass and reduced total Ch, LDL, and TG levels in the serum of
obese volunteers [66]. The regulation of lipid turnover in the liver is partly mediated by its
metabolites, acetate and propionate [65]. A recent study demonstrated that A. muciniphila
can inhibit cholesterol synthesis in the colon through mechanisms involving the mucin
utilization locus (MUL) gene complex [67].

Bacteria from the Christensenellaceae family are typically associated with lean pheno-
types [8,31,64]. Christensenellaceae have been described as more abundant among individ-
uals with favourable serum lipid profiles, characterized by low total Ch, LDL, and TG
levels and high HDL [8,13,64,68]. C. minuta’s anti-obesity effects are presumably mediated
by the inhibition of hepatic lipogenesis and the strengthening of the gut epithelial barrier.
This species inhibits hepatic glucokinase, a regulator of glycolysis and lipogenesis [69].
C. minuta also produces acetate and butyrate, participates in secondary bile acid synthesis,
and has shown cholesterol-reducing properties, at least in cultures [31,69,70].

Bacteria correlated with healthy serum lipid profiles, including higher HDL levels
and lower total Ch and LDL, also included other species with probiotic potential, repre-
senting the genera Streptococcus, Lactococcus, and Lactobacillus. The capability of probiotic
bacteria to alleviate hyperlipidaemia has been supported by studies investigating the
effects of probiotic supplementation among patients with obesity and mild-to-high hy-
perlipidaemia [19,20,58]. The suggested mechanisms mediating the cholesterol-lowering
effects of probiotics include SCFA production, bile acid modulation, and cholesterol trans-
port and metabolism [31,32,71]. Species of Lactobacillus and Streptococcus have been also
demonstrated to be able to directly bind cholesterol [72].

The probiotics L. lactis and S. thermophilus are considered to be food-borne and therefore
transient species in the gut microbiome [73,74]. The administration of both probiotics had
beneficial effects on circulating lipid profiles in animal models, supporting their protective
role against dyslipidaemia [73,75]. On the contrary, S. lutetiensis is a common resident
species of the human gut. Bacteria from Streptococcaceae were enriched in a murine model
of obesity after a high-fat diet treatment [69]. It was also found to be more abundant among
women with dyslipidaemia and among obese adults [9,76]. Adolescents with obesity also
were characterized by a higher abundance of Streptococcaceae, identified as S. thermophilus
and S. salivarius [77]. Species from the genus Streptococcus, particularly S. thermophilus
and S. salivarius, can be misidentified due to high sequence similarity [74]. Therefore, to
distinguish between the metabolic effects of different Streptococcus species, more studies
with controlled dietary probiotic intake are necessary.

Bacteria from the genus Parabacteroides are known to be engaged in cholesterol metabolism
and to regulate other obesity-related traits [78]. P. distasonis and Parabacteroides sp CT06
were correlated with higher blood LDL, HDL, and non-HDL Ch levels, and, subsequently,
total Ch measures in the study cohort. This contradicts the overall beneficial impact
on metabolism attributed to Parabacteroides species. The administration of P. distasonis
ameliorated obesity and adverse lipid profiles in a murine model. The species produces
acetate and succinate. Succinate interacts with the gastrointestinal nervous system to reduce
food intake and regulate glucose homeostasis. P. distasonis also upregulates the production
of secondary bile acids, triggering signalling cascades downstream of FXR and TGR5, thus
modifying gluconeogenesis and lipogenesis [31,78]. Although there is some evidence that
decreasing Parabacteroides abundance might contribute to the cholesterol-lowering action
of metformin and certain prebiotics, the mechanisms underlying these findings are not
clear [79,80].

We also detected correlations with serum lipid levels for other taxa comprising bile
acid-metabolising members. Alistipes species have been described as animal-based, protein-
and fat-rich diet-favouring, bile-acid tolerant bacteria [38,81]. Gut microbial communities of
mice receiving gut microbiome transplants from patients with increased serum cholesterol
were characterized by an increased abundance of Alistipes, indicating a positive link with
host circulating lipid levels. Alistipes participates in bile acid metabolism, and the synthesis
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of sulfonolipids and SCFAs, predominantly acetate [62,82]. Another mechanism linking
Alistipes with aberrant lipid levels could be the production of lipopodenglysaccharide
(LPS) [81]. However, Takagi and colleagues found that Alistipes was significantly depleted
among hypercholesterolaemic individuals [17].

Members of the Peptostreptococcacea family, in line with the observed correlation pat-
terns, are known for their ability to modify bile acids and reduce of cholesterol levels by
converting it to coprostanol [32]. Peptostreptococcus has been previously correlated with
metabolic diseases like type 2 diabetes and metabolic syndrome [83,84]. Apart from Pep-
tostreptococcaceae, M. timonensis, another representative of the Eubacteriales order within
Firmicutes phylum, was associated with decreased total Ch and LDL levels, showing mod-
erate but consistent effects. M. timonensis is a recently described and poorly characterized
species related to bacteria from the Faecalicatena genus from the Lachnospiraceae family [85].
The administration of plant-derived bioactive phenylethanoid glycosides increased the
abundance of M. timonensis, concurrently decreasing total Ch, LDL, and HDL levels in a
mouse model of obesity, suggesting a possible link between the species and circulating
lipids [86]. In the current study, participants who reported a higher consumption of fibre-
rich foods such as fruits and legumes had a low relative abundance of this species. It is
possible that, similar to closely related species from the Faecalicatena genus, M. timonensis
favours an animal-based, high-fat diet [87]. Together, this indicates that M. timonensis may
modulate the host’s lipid metabolism, but the species’ role in the human gut microbiome
requires further investigation.

Unrelated taxa with association signals detected through a single test included the
families Veillonelacea and Erysipelotrichacea, the genera Escherichia, Eggerthella, Bacteroides,
and Duncaniella, and the species M. smithii and Faecalitalea cylindroides. Thus far, the family
Erysipelotrichaceae and its member F. cylindroides have been associated with hypercholes-
terolaemia, although the metabolic pathways linking Erysipelotrichaceae with aberrant lipid
metabolism have not been clearly indicated [29,88]. A positive association with dyslipi-
daemia has been also reported for Escherichia-Shigella, which produces LPS inflammatory
mediators [9,89]. Eggerthella was observed to be more abundant among individuals with
increased blood TG levels [6,8,13]. At least some species from this genus have been re-
ported as modifiers of the intestinal bile acid pool [90]. The genus Bacteroides is diverse
and comprises bacteria producing SCFAs that could potentially reduce serum choles-
terol [31]. The association patterns between Bacteroides and metabolic traits like obesity
and hyperlipidaemia vary across different studies, probably due to the high diversity of
the genus [8,29,31,52,56]. Human gut methanogens, including M. smithii, have been found
to be positively correlated with circulating cholesterol levels [15,91]. The genus Veillonella
has been found among taxa enriched in hypercholesterolaemia. The family Veillonelaceae
comprises lactate-degrading bacteria that are related to physical performance rates in ath-
letes. The species V. atypica improved performance rates by facilitating exercise-induced
lactate conversion into propionate, which supports a potential role of Veillonella in lipid
metabolism [92].

4.3. Confounding Effects of Gender

Blood lipid profiles vary by gender. In general, women tend to have higher levels of
serum HDL and apolipoprotein A, whereas men tend to have higher levels of circulating
TG, LDL, and apolipoprotein B compared to women [93]. Gender-related disparities in
serum lipid levels are primarily attributed to the sex hormone-mediated regulation of
lipid metabolism, especially in the liver, the distribution of adipose tissue depots, fatty
acid turnover, and other physiological factors [94]. Recently, gender-related differences
in gut microbiome composition have been recognized as one of the factors contributing
to the divergence in lipid metabolism between men and women [95,96]. The differential
regulation can be partially explained by the two-way interaction between gut bacteria and
sex hormones, as well as differences in primary and secondary bile acid levels between
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genders [96,97]. Therefore, gender can serve as a significant confounder for correlations
between host lipid profiles and gut bacteria [87,97–99].

Although the average microbial alpha diversity in men was similar to that in women,
and there were no significant differences in the overall gut microbiome composition, we
observed significant differences in the abundance of several lipid-related bacteria between
men and women. These differences included species correlated with favourable lipid pro-
files from the Lachnospiraceae family, such as L. bacterium and L. bacterium Choco86, as well
as L. eligens and R. intestinalis, which are associated with lower HDL and higher TG levels.
All four species were less abundant among women. The gender-specific regulation of Lach-
nospiraceae abundance has been previously described in a high-fat-diet mouse model, and
these effects were linked to differences in bile acid metabolism between genders [100]. An-
other butyrate producer, I. butyriciproducens, was also less abundant among men, although
it is unclear whether such differences in abundance between genders have been observed in
other studies. Gender-specific differences in abundance have also been reported for species
from the genera Christensenella and Bacteroides, although the functional causes of these
gender-related differences in abundance and their relevance to lipid metabolism remain
unclear [64,95].

However, it is important to note that our study was inadequately sized to draw con-
clusions about gender-specific correlations among bacterial taxa. Therefore, we cannot
determine whether there is any biological explanation for the observed differences in abun-
dance between men and women for these taxa. Additionally, it should be acknowledged
that the women in our cohort had higher serum cholesterol levels and lower TG levels
than the men. It cannot be ruled out that the detected correlations between lipid levels and
differentially abundant species could be spurious findings confounded by gender.

4.4. Impact of Diet-Related Factors

Diet shapes the gut microbiome and the host’s lipid metabolism, and the shared
modulation can shift associations [25,26,101–103]. Thet consumption of fibre-rich products
correlates with reduced serum LDL and TG levels. Dietary fibre influences the propor-
tions of circulating lipid fractions by slowing gastric emptying, delaying lipid absorption,
inducing satiety, and increasing bile acid excretion [25]. On the contrary, dietary refined
sugars and fats lower serum HDL while increasing circulating TG levels [25,102,103].
As a potent regulator of gut microbiome composition, diet can rapidly reshape gut mi-
crobial communities. Fibre promotes the growth of bacteria, such as SCFA producers
Bifidobacterium, Faecalibacterium, and Roseburia, while refined sugars and fats that are high
in the Western-type diet are preferred by Enterobacteriaceae, Alistipes, Odoribacter, and Bac-
teroides [27,55,80,104–106]. Changes induced by dietary fats depend on the quality of the
fats [54,57,107]. Polyunsaturated fatty acids (PUFAs) can be considered as healthy fats
with lipid-lowering and anti-inflammatory properties. A higher intake of PUFAs has been
positively correlated with an abundance of Lachnospiraceae, Bifidobacterium, Roseburia, and
Lactobacillus [57,108].

In our study, the consumption of fish products had the most notable impact on blood
cholesterol levels and the relative abundances of bacterial species. A diet rich in fish
products correlates with an improved blood cholesterol profile and alleviates metabolic
syndrome [109]. Here, supplementation with salmon modulated serum lipid levels and
increased the Erysipelotrichaceae family, Eggerthella genus, and R. hominis species relative
abundances. Similarly, participants who included fish in their habitual diet more often
were characterized by a higher A. muciniphila abundance and improved lipid profiles.
Supplementation with fish-derived PUFAs increases the abundances of beneficial taxa
like Roseburia species and A. muciniphila in the human gut. Nevertheless, the functional
pathways linking bacteria, PUFAs, and the regulation of lipids are still under investiga-
tion [107,108]. Therefore, it is hard to judge whether the negative correlations with lower
cholesterol for these taxa were due to the impact of diet, the functional contribution of
bacteria, or combined effects.
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Other components of the habitual diet also potentially regulated the abundances
of several lipid-associated taxa. Species from the genus Bacteroides correlated with sug-
ary foods, sweetened pastries, and cereal-based products, including refined flour. The
increased abundance of Bacteroides among participants who choose foods with refined
sugars is likely due to Bacteroides’ preference towards a diet rich in animal-derived proteins
and fats and high in refined sugars [110,111]. However, consuming these products was
unlikely a mediator of the observed correlations between the Bacteroides species and lipid
profiles. Furthermore, it has not been proven that refined sugars significantly contribute
to developing dyslipidaemia [103]. On the other hand, the Peptostreptococcaceae family is
among the taxa enriched by a Mediterranean-type diet that is high in fruits and vegetables
and low in animal fats [110]. Since this family was more abundant among participants
consuming more poultry and fruits, we cannot exclude that lower cholesterol levels among
participants with a higher abundance of Peptostreptococcaceae are associated with healthier
food choices.

4.5. Study Limitations

Our study had several major limitations. The data for this study were derived from
a limited number of participants. Such small cohorts are susceptible to bias and lack
representativeness of the population, which can influence the direction and effect size of the
detected correlations. Furthermore, this analysis was conducted in the context of a dietary
intervention study with the potential to impact both lipid profiles and the composition
of gut communities. Therefore, without further validation in larger cohorts, our findings
cannot be generalized to the broader population.

Including additional portions of fish and meat products into the habitual diet had
influenced at least some of the associations, obscuring the true relationships between
the bacterial taxa and blood lipid profiles, and even more so because the number of
included participants was relatively small. The restricted number of participants, high inter-
individual variation, and relatively low strength of correlations between the taxa and blood
lipid levels could have further lowered the possibility of detecting existing relationships, as
well as having potentially increased the probability of random correlations due to the high
rate of shared factors shaping both the gut microbiome composition and blood lipid profiles.
The fact that none of the associations retained significance after correction for multiple tests
emphasizes this issue [112]. Apart from that, the information on habitual diet collected with
the food frequency questionnaire needed to be more extensive and include questions on the
cooking approach. Food processing and cooking methods change the nutrient availability
for the gut microbiome and can modulate the impact of the same food item [104]. The
taxonomic and functional composition of the gut microbiome communities can change
in response to dietary changes over short period of time [55]. Therefore, more detailed
data on habitual diet collected on a daily basis would have improved the resolution and
facilitated the interpretation of the analyses. Although the participants were asked to keep
their dietary habits unchanged, variations in the consumed foods over the study period
cannot be excluded. Reporting errors could have introduced additional bias, particularly
for foods considered unhealthy [113]. The gut microbiome is a highly dynamic system, with
intra-individual variation reaching up to 23% [114]. Furthermore, gut communities actively
respond to short-term dietary changes [55]. Our study had a relatively short duration.
Therefore, follow-up studies conducted over a longer period, exceeding 11 weeks, could be
valuable to recognize serum lipid-related taxa from those showing random associations due
to temporal variations in both lipid levels and taxa abundance. Additionally, sampling the
gut microbiota over a more extended timeframe could help to assess the role of transient
species, such as food-related S. thermophilus.

The under-representation of men in the cohort hindered a comprehensive assessment
of gender-specific correlations. Only baseline BMI data for the participants were available;
however, follow-up data would have been more suitable for the study’s objectives. Addi-
tionally, crucial information regarding several relevant lifestyle factors, such as physical
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activity, was missing. Physical exercise has been shown to improve lipid turnover and
reduce serum cholesterol and triglyceride levels. Moreover, it can alter the composition
of the gut microbiome and the spectrum of produced microbial metabolites [115]. Conse-
quently, the absence of data on physical activity complicates the interpretation of the results
obtained. Furthermore, there were variations in the collection times between the faecal
and blood samples, with discrepancies of up to one day. These variations could potentially
have led to misalignments in the lipid measurements and gut microbiome profiles. Lastly,
it would have been advantageous to exclude participants with a genetic predisposition
to dyslipidaemia [6,116]. This exclusion could have minimized the possibility of biased
correlations between the serum lipid profiles and gut microbiome composition.

5. Conclusions

To conclude, although not without limitations, our study supports the role of the
gut microbiome as an essential regulator of circulating lipid levels. Our findings confirm
correlations with serum lipid profiles that were previously observed for several well-known
microbial regulators of host metabolism; they also highlight the recently described, poten-
tially novel player M. timonensis that regulates the host’s cholesterol turnover. However,
we also detected some contradictory associations that could potentially be explained by
the study design. The study was based on a very small and highly heterogenous group of
participants. Apart from that, we cannot exclude any confounding effects of the dietary
intervention. The observed correlations do not necessarily reflect causal relationships
between members of the gut communities and the hosts’ serum lipid profiles. Therefore,
further larger-scale studies involving participants selected based on their age, BMI, and
lifestyle factors like physical activity in the background of a controlled diet (particularly
with the dietary intake of probiotics) should help to stratify the most significant correlations
and decipher the confounding factors. More precise quantification of the target taxa along
with the classification of bacterial lineages representing the same species and metabolic
profiles of participants could help to clarify the contradictory findings observed for several
taxa. Accumulating data on association patterns could further guide in-depth functional
studies to pinpoint exact interaction mechanisms and factors shifting the balance between
different pathways leading to different network results on human metabolism.
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39. Ziętek, M.; Celewicz, Z.; Kikut, J.; Szczuko, M. Implications of Scfas on the Parameters of the Lipid and Hepatic Profile in
Pregnant Women. Nutrients 2021, 13, 1749. [CrossRef]

40. Szczuko, M.; Kikut, J.; Maciejewska, D.; Kulpa, D.; Celewicz, Z.; Ziętek, M. The Associations of Scfa with Anthropometric
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