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Introduction: Prostate cancer (PCa), one of themost prevalentmalignancies affecting
men worldwide, presents significant challenges in terms of early detection, risk
stratification, and active surveillance. In recent years, liquid biopsies have emerged
as a promising non-invasive approach to complement or even replace traditional tissue
biopsies. Extracellular vesicles (EVs), nanosized membranous structures released by
various cells into body fluids, have gained substantial attention as a source of cancer
biomarkers due to their ability to encapsulate and transport a wide range of biological
molecules, including RNA. In this study, we aimed to validate 15 potential RNA
biomarkers, identified in a previous EV RNA sequencing study, using droplet digital PCR.

Methods: The candidate biomarkers were tested in plasma and urinary EVs
collected before and after radical prostatectomy from 30 PCa patients and
their diagnostic potential was evaluated in a test cohort consisting of 20
benign prostate hyperplasia (BPH) and 20 PCa patients’ plasma and urinary
EVs. Next, the results were validated in an independent cohort of plasma EVs
from 31 PCa and 31 BPH patients.

Results:We found that the levels of NKX3-1 (p=0.0008) in plasmaEVs, and tRF-Phe-
GAA-3b (p < 0.0001) tRF-Lys-CTT-5c (p < 0.0327), piR-28004 (p = 0.0081) andmiR-
375-3p (p < 0.0001) in urinary EVs significantly decreased after radical prostatectomy
suggesting that the main tissue source of these RNAs is prostate and/or PCa. Two
mRNA biomarkers—GLO1 and NKX3-1 showed promising diagnostic potential in
distinguishing between PCa and BPH with AUC of 0.68 and 0.82, respectively, in the
test cohort and AUC of 0.73 and 0.65, respectively, in the validation cohort, when
tested in plasma EVs. Combining thesemarkers in a biomarker model yielded AUC of
0.85 and0.71 in the test and validation cohorts, respectively. Although thePSA levels in
the blood could not distinguish PCa fromBPH in our cohort, adding PSA to themRNA
biomarker model increased AUC from 0.71 to 0.76.
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analysis; PCa, prostate cancer; piRNA, piwi-interacting RNA; PSA, prostate-specific antigen; SNP, single
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Conclusion: This study identified two novel EV-enclosed RNA biomarkers–NKX3-1
and GLO1–for the detection of PCa, and highlights the complementary nature of
GLO1, NKX3-1 and PSA as combined biomarkers in liquid biopsies of PCa.
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Introduction

PCa is the second leading cause of cancer in men, with over
1.4 million newly diagnosed cases in 2020 (Sung et al., 2021). Due
to its highly heterogenous nature, the course of the disease tends to vary
between patients, with some developing aggressive forms of cancer with
a high risk of metastasis and some having a slowly progressing disease
without the need for active treatment (Flores-Téllez and Baena, 2022).
Currently, diagnostic examinations include the measurement of PSA
levels in the blood, digital rectal examination, and histological analysis of
transrectal ultrasound scan (TRUS)-guided biopsies (Descotes, 2019;
Lomas andAhmed, 2020). However, these tests are known to pose some
detrimental issues - PSA tests have low specificity and are unable to
differentiate PCa from benign prostate hyperplasia (BPH), whereas
histological analysis of biopsy material tends to be subjective and has a
high risk of infection at the puncture site (Loeb et al., 2013; Ahmed et al.,
2017; Ilic et al., 2018). Furthermore, a new problem has arisen in recent
decades - overdiagnosis and overtreatment of PCa, since the current
diagnostic approaches cannot reliably differentiate between fast-
progressing cancer requiring aggressive treatment and indolent
forms of the disease that can be managed by active surveillance
(Loeb et al., 2014). Therefore, more precise and less invasive tools
for the detection and monitoring of PCa still represent unmet clinical
needs in the management of PCa.

In recent years, liquid biopsies have emerged as a popular, non-
invasive alternative to tissue biopsies. The term refers to the analysis
of cancer-derived molecules in any biofluid to gain information
about a potential or existing malignancy (Lu et al., 2019). Recently,
extracellular vesicles (EVs) have gained distinct recognition as a
potential source of biomarkers in PCa patients’ blood and urine
(Hessvik et al., 2013; Li et al., 2014; Ramirez-Garrastacho et al.,
2022a). EVs are heterogenous membrane-bound particles with
diverse roles in cellular communication and biomolecule
transport that are secreted by virtually all cell types into the
extracellular space (Yáñez-Mó et al., 2015; van Niel et al., 2018).
They contain proteins, lipids, nucleic acids, and various metabolites,
depicting the contents of cells from which they originate (Abels and
Breakefield, 2016). Furthermore, cancer-derived EVs have been
shown to contain altered cargo and play a significant role in
tumor development, proliferation, metastasis, and resistance to
treatment (Cocks et al., 2021; Hell et al., 2021). Several studies
have been carried out identifying specific PCa RNA biomarkers in
plasma and urinary EVs (Nilsson et al., 2009; Samsonov et al., 2016;
Foj et al., 2017; Matsuzaki et al., 2021), however, only a few of them
have been validated in independent studies (Yu et al., 2021; Ramirez-
Garrastacho et al., 2022a).

In a previous study, we carried out RNA sequencing analysis of
plasma and urinary EVs collected before and after radical
prostatectomy, and matched tumor and normal prostate tissues
from 10 PCa patients to identify PCa-derived RNA biomarkers

(Bajo-Santos et al., 2023). We hypothesized that the levels of
PCa-derived RNA biomarkers would decrease in post-operation
samples compared to pre-operation samples if a substantial
fraction of the given RNA in the given biofluid comes from
PCa and/or prostate, therefore we searched for EV RNAs that
are overexpressed in tumor tissues, present in the pre-operation
EVs above the set threshold and decrease after prostatectomy. In
the current study, we aimed to validate the biomarker candidates
by RT-ddPCR in independent cohorts of plasma and urine
samples from PCa and BPH patients and establish their diagnostic
values.

Materials and methods

Patient recruitment and sample collection

A total of 52 patients diagnosed with PCa and 51 patients
diagnosed with BPH were enrolled in this study at Riga East
University Hospital between October 2018 and January 2020.
The patients were followed up until September 2021. The
inclusion criteria for PCa patients were as follows: (1) recent
diagnosis of resectable PCa confirmed through histopathological
analysis TRUS-guided biopsy, (2) scheduled prostatectomy, and (3)
age over 18. PCa patients were excluded if they had: (1) other
concurrent oncological conditions, (2) undergone chemotherapy,
radiation, or hormonal treatment prior to the study, (3) urinary tract
infection during sample collection, (4) received a blood transfusion
within the past 4 months, (5) long-term catheter use, or (6) inability
to provide informed consent. The inclusion criteria for BPH patients
were: (1) recent diagnosis of BPH confirmed through
histopathological analysis TRUS-guided biopsy and (2) blood
PSA level >2.5 ng/mL and <50 ng/mL. Further clinical
characteristics of the patients included in this study are provided
in Table 1.

Patient samples were collected at two time points: before and
3–4 months after radical prostatectomy, denoted as Pre-Op and
Post-Op, respectively. Approximately 60 mL of the first morning
urine were collected from each patient and centrifuged at 2000 g for
15 min at room temperature. The resulting aliquots were stored
at −80°C. Blood samples were collected in EDTA-coated tubes and
processed at room temperature within 2 h after the blood draw. A
two-step plasma isolation process was performed on the blood
samples by 2x centrifugation at 3000 g for 10 min at room
temperature. The plasma samples were aliquoted and stored
at −80°C.

A uropathologist obtained tumor and normal tissue samples
immediately following radical prostatectomy. One portion of the
tissue samples underwent a histopathological evaluation to
determine the presence or absence of tumor cells and to assess
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the Gleason score. The remaining portion was preserved in
RNALater solution (QIAGEN) and stored at −20°C.

The study was conducted in accordance with the principles
outlined in the Declaration of Helsinki. The clinical samples and
information was collected after obtaining informed written consent
from the patients, ensuring their anonymity. The study protocol was
approved by the Latvian Central Medical Ethics Committee
(decision No. 01-29.1/488).

Isolation and characterization of
extracellular vesicles

EVs were isolated from patient plasma and urine samples using size
exclusion chromatography (SEC). In a water bath, frozen urine (20 mL)
and plasma (1 mL) samples were thawed at +37°C. Urine samples were
centrifuged at 10 000 g for 15 min at +4°C to remove larger debris and
uromodulin and concentrated up to 1 mL using 100 kDa centrifugal
filters (Merck Millipore, USA). Following this, urine and plasma
samples were loaded onto Sepharose CL2B 10 mL columns and the
eluate was collected in 15 0.5 mL fractions. Each fraction was measured
with Zetasizer Nano ZS (Malvern, UK) and fractions containing at least
70% of particles larger than 30 nm in diameter were combined and
concentrated up to 100 µL using 3 kDa centrifugal filters (Merck
Millipore, USA). EV samples were treated with Proteinase K (1 mg/
mL) (ThermoFisher Scientific, USA) for 60 min at RT followed by
treatment with RNAse A (100 ng/μL) (ThermoFisher Scientific, USA)
treatment for 15 min at RT.Nanoparticle tracking analysis (NTA) using
Nanosight NS500 instrument (Malvern, UK) was performed on each
sample to determine the approximate size and concentration of EVs as
described before (Endzeliņš et al., 2017).

RNA isolation

RNA was extracted from EV samples using miRNeasy Micro Kit
(Qiagen, Germany) following the manufacturer’s protocol.
Additionally, DNase treatment was performed on the column
according to the manufacturer’s instructions. The concentration
of EV-RNA was measured using Agilent 2100 Bioanalyzer and RNA
6000 Pico Kit (Agilent Technologies, USA).

Reverse transcription - droplet digital PCR

cDNA was synthesized using miRCURY LNA RT kit according
to the manufacturer’s instructions (Qiagen, Germany). Nine µl (half
of the entire yield) of RNA was used for cDNA synthesis and further
diluted 1:2 in nuclease-free water (ThermoFisher Scientific, USA).
Each droplet digital PCR (ddPCR) reaction containing 2 µL of
diluted cDNA, 10 µL of 2x QX200 ddPCR EvaGreen Supermix
(Bio-Rad, USA), 7 µL of nuclease-free water (ThermoFisher
Scientific, USA) and 1 µL of primer mix (Qiagen, Germany
(Supplementary Table S1) was loaded onto a DG8 cartridge (Bio-
Rad, USA). Then, 70 µL of QX200 Droplet Generation Oil for
EvaGreen (Bio-Rad, USA) were added to the cartridge and a
DG8 gasket (Bio-Rad, USA) was hooked over the cartridge,
followed by the insertion of the cartridge into a QX200 Droplet
Generator (Bio-Rad, USA). 40 μL of the generated droplets were
then loaded onto a clear 96-well semi-skirted PCR plate (Bio-Rad,
USA) and the plate was heat sealed with a pierceable foil (Bio-Rad,
USA) using ALPS 25 manual heat sealer (ThermoFisher Scientific,
USA). The PCR reaction was carried out using a T100 Thermal
Cycler (Bio-Rad, USA) under the following conditions: 95°C for

TABLE 1 Patient characteristics.

Validation cohort Test cohort Validation cohort

PCa pre-Op vs
Post-OP

PCa BPH PCa BPH

Number 30 20 20 31 31

Age (Median, years) 66 66.5 67 64 64

Age (range) 49-77 49-74 53-84 50-88 45-80

Age (p-valuea) 0.65 0.46

Diagnostic PSA (ng/mL) Number % Number % Number % Number % Number %

<4 2 6.67 2 10 2 10 1 3.2 11 35.5

4-10 17 56.67 8 40 9 45 18 58.1 14 45.2

>10 11 36.67 10 50 9 45 12 38.7 6 19.4

Gleason score

6 12 40 7 35 NA ** NA 11 35.5 NA NA

7 (3 + 4) 3 10 3 15 NA NA 5 16.1 NA NA

7 (4 + 3) 9 30 4 20 NA NA 14 45.2 NA NA

8 3 10 3 15 NA NA 1 3.2 NA NA

9 3 10 3 15 NA NA - - NA NA

aMann-Whitney test; **NA, Not Applicable.
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5 min; 40 cycles at 95°C for 30 s followed by specific primer
annealing temperature (Supplementary Table S1); 4°C for 5 min;
90°C for 5 min and indefinite hold at 4°C. The program was run at a
2°C/sec rampage rate. After PCR, the plate was allowed to cool for
at least 2 h at +4°C and then was read using a QX200 Droplet
Reader (Bio-Rad, USA). Results were analyzed using QuantaSoft
Software (Bio-Rad, USA). Before performing RT-ddPCR
experiments, the optimal annealing temperature for each primer
pair was determined by running PCR reactions on a temperature
gradient (50°C-60°C).

Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.0
(GraphPad, USA) and RStudio 4.2 (RStudio Team, USA).
Comparison between PCa Pre-Op vs. Post-Op data was assessed
usingWilcoxon matched-pairs signed rank test. Mann-Whitney test
was used for comparing the biomarker levels in independent groups.

RNA biomarker models were constructed with glm package
(Venables and Ripley, 2002) by fitting generalized linear models
based on Gaussian identity function. To assess NKX3-1 expression
level in the datasets available at The Cancer Genome Atlas (TCGA),
normalized gene expression values (TPM) were obtained from the
Gene Expression Omnibus (accession number GSE62944) (Rahman
et al., 2015). We selected the Prostate Adenocarcinoma (PRAD)
NKX3-1 subset of data and tested it by Mann–Whitney test.

Results

Extracellular vesicle isolation and quality
control

EVs were isolated from PCa and BPH patients’ plasma and urine
samples following a previously established protocol (Endzeliņš et al.,
2017). All samples were categorized into the following groups: (1)
RNASeq validation cohort (30 PCa Pre-Op vs Post-Op; plasma and

FIGURE 1
EV isolation and quality control. (A,B) Transmission electron microscopy images showing EVs isolated from urine (A) and plasma (B). Western blot
analysis of ALIX, Calnexin, CD63 and TSG101 in plasma and urinary EVs from 3 randomly selected patients as well as LNCap prostate cancer cells (C).
Paired dot plots showing EV concentration per ml of plasma (D) and urine (E) samples before and after radical prostatectomy. Wilcoxon matched-pairs
signed rank test was used to assess the statistical significance of the differences between groups. (F–H) Box plots showing EV concentration per ml
of plasma (F–H) and urine (G) in patients with PCa and BPH. Figures 1F, 1G represent patients in the test cohort and Figure 1H represents patients in the
validation cohort. Mann-Whitney test was used to assess the statistical significance of the differences between groups. p-value < 0.05 was considered
significant.
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urine), aimed to validate the results of the previous EV-RNA
sequencing study (Bajo-Santos et al., 2023); (2) test cohort
(20 PCa Pre-Op vs 20 BPH; plasma and urine), aimed to assess
potential RNA biomarker ability to discriminate between PCa and
BPH; (3) validation cohort (31 PCa Pre-Op vs 31 BPH, plasma),
aimed to confirm RNA biomarker diagnostic value. The quality of
the obtained EV preps was checked by transmission electron
microscopy for urine (Figure 1A) and plasma (Figure 1B) as well
as Western blot analysis with antibodies against typical EV markers
ALIX, TSG101 and CD63, and calnexin as a negative control of
plasma and urinary EVs from randomly selected 3 patients
(Figure 1C) and the results are published before (Bajo-Santos
et al., 2023). Routinely, EV yields in all samples were assessed by
NTA. Results show that the number of particles ranges from 8.60 ×
109 to 1.67 × 1011 in Pre-Op and 5.6 × 109 to 1.50 × 1011 particles per
ml of plasma in Post-Op plasma samples in the RNAseq validation
cohort (Figure 1D) and 2.60 × 107 to 7.89 × 109 in Pre-Op and 3.19 ×
107 to 5.45 × 109 particles per ml of urine in Post-Op urine samples
(Figure 1E). In the test cohort, EV numbers ranged from 8.6 × 109 to
1.67 × 1011 in PCa and 7.62 × 109 to 1.93 × 1011 in BPH plasma
samples (Figure 1F) and 2.6 × 107 to 6.51 × 109 in PCa and 1.94 × 107

to 8.97 × 109 in BPH urine samples (Figure 1G). In the validation
cohort, EV concentration per ml ranged from 1.57 × 1010 to 1.16 ×
1011 in PCa and 1.69 × 1010 to 4.05 × 1011 in BPH plasma samples
(Figure 1H). No statistically significant differences between the
groups of samples were found.

Biomarker candidates

A total of 11 potential RNA biomarker candidates representing
various RNA biotypes were selected for this study based on their
overexpression in tumor tissues, relatively high levels in PreOp
EVs and decreased levels in PostOp EVs in our previous RNA
sequencing study (Bajo-Santos et al., 2023). Additionally, 4 RNA
biomarker candidates were included (PCA3, PCAT14, tRNA-Phe-
GAA-1-1/2/3/4/5/6-3b (tRF-Phe-GAA-3b) and tRNA-Lys-CTT-
(1-1/2)/(4-1)-5c (tRF-Lys-CTT-5c)) based on previously reported
diagnostic and/or prognostic values. Further information on each
of the RNA candidates is provided in Table 2. For each of the
candidates, LNA-based primers were designed (utilizing either
QuantiNova LNA PCR custom assays or miRCURY LNA

TABLE 2 Selected biomarker candidates.

Gene name PCa vs normal tissues PreOp vs PostOp
plasma

PreOp vs PostOp
urine

Published data supporting biomarker
validity

Log2FC adj.
p-value

Log2FC adj.
p-value

Log2FC adj.
p-value

mRNA

GLO1 1.47 3.16 × 10−13 0 0 4.07 3.98 × 10−3 Rounds et al. (2021)

NKX3-1 2.76 4.67 × 10−5 0.76 0.97 2.67 0.012 Huang et al. (2018)

AMD1 2.00 2.78 × 10−22 −0.55 0.97 3.97 1.11 × 10−3 Bajo-Santos et al. (2023)

PMEPA1 2.85 5.35 × 10−16 −0.42 0.97 2.72 2.03 × 10−3 Sharad et al. (2020)

RBM47 2.74 1.36 × 10−8 1.37 0.97 2.48 9.17 × 10−3 Bajo-Santos et al. (2023)

MAZ 3.37 1.63 × 10−20 2.75 0.97 3.54 1.3 × 10−4 Bajo-Santos et al. (2023)

lncRNA

PCA3 9.08 1.32 × 10−85 −0.24 0.96 1.88 0.36 Woo et al. (2019)

PCAT14 7.17 129 × 10−32 0 0 2.45 0.34 Yan et al. (2021)

tRFs

tRF-Phe-
GAA-3b

−0.59 0.92 −2.00 0.43 1.19 0.62 Olvedy et al. (2016)

tRF-Lys-CTT-5c −0.08 0.92 1.4 0.43 0.94 0.62 Olvedy et al. (2016)

miRNAs

miR-375-3p 2.90 1.51 × 10−4 1.01 0.99 1.45 3.22 × 10−3 Foj et al. (2017)

miR-92a -1-5p 1.73 7.95 × 10−4 0.68 0.99 1.90 3.22 × 10−3 Mercadal et al. (2020)

miR-27a - 5p 1.06 2.80 × 10−4 −0.54 0.99 0.63 0.62 Ku et al. (2021)

miR-196a-5p 1.13 6.51 × 10−5 0.27 0.99 0.57 0.56 Rodríguez et al. (2017)

piRNA

piR-28004 12.30 0 −4.88 0.23 6.47 1.77 × 10−3 Bajo-Santos et al. (2023)
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miRNA PCR assays, depending on the target length and RNA
biotype), employing the GeneGlobe platform from Qiagen,
Germany. PCR assay numbers are provided in Supplementary
Table S1.

Normalization strategies

Given the present lack of established PCR data normalization
methodologies for the analysis of urinary EVs, we adopted a triad of
distinct normalization strategies. The first approach involved data
normalization relative to 1 mL of the biofluid from which the EVs
were extracted. The second strategy entailed data normalization
against the total EV count, as quantified through NTA. The third
method encompassed data normalization with respect to two
candidate internal control miRNAs, namely, let-7f-5p and miR-
26a-5p, as discerned in a preceding sequencing study (Bajo-Santos
et al., 2023) and published by others (Tonge and Gant, 2013; Gouin
et al., 2017). These miRNAs were detected across all EV samples and
exhibited minimal variance, thereby facilitating the reduction of data
variability in pursuit of enhanced consistency. These strategies were
devised with the primary objective of minimizing data variance
within our dataset.

For each normalization variant, variation coefficients for each
RNA biomarker were calculated from the raw PCR data as shown in
Table 3. It was concluded that on average, normalizing data against
1 mL of biofluid from which EVs were isolated showed the least
variation among the datasets. All further analyses were conducted
based on this normalization method.

Comparison of RNA biomarker levels in PCa
pre-Op versus post-Op EVs

To validate the results of the previous RNA sequencing study
and identify biomarkers, whose main tissue source in plasma or
urinary EVs was PCa and/or normal prostate, we compared their
levels in plasma and urinary EV samples collected before and after
radical prostatectomy from 30 PCa patients.

In urinary EVs, the levels of four biomarker candidates: tRF-
Phe-GAA-3b (FC = 3.73; p < 0.0001), tRF-Lys-CTT-5c (FC = 1.46,
p = 0.0327), miR-375-3p (FC = 14.85, p < 0.0001) and piR-28004
(FC = 2.45, p = 0.0081) were significantly decreased following radical
prostatectomy (Figures 2A–D), which is in concordance to our
previous data. However, in plasma EVs, the levels of only one
biomarker candidate—NKX3-1 (FC = 2.32, p = 0.0008)
significantly decreased after prostatectomy (Figure 2E). The levels
of several other biomarker candidates in plasma (Supplementary
Image S1) and urinary (Supplementary Image S2) EVs tended to
decrease following prostatectomy yet did not reach statistical
significance.

Diagnostic performance of RNA biomarker
candidates

In order to assess whether the selected RNA biomarker
candidates could distinguish between patients with PCa and
BPH, we compared their levels in a test cohort of 20 PCa and
20 BPH patient plasma and urinary EV samples. In plasma EV

TABLE 3 Variation coefficients of RT-ddPCR results in plasma and urinary EV samples under different normalization strategies.

Marker name Plasma Urine

Volume (1 mL) Internal control miRNA EV count Volume (1 mL) Internal control miRNA EV count

GLO1 1.31 2.39 2.11 1.50 2.97 1.71

NKX3-1 1.11 2.48 1.79 1.70 2.79 2.37

AMD1 1.43 3.11 1.91 1.66 2.94 2.02

PMEPA1 1.29 2.77 1.49 1.33 3.53 2.46

RBM47 1.44 3.12 1.51 1.40 2.73 2.31

MAZ 1.20 2.98 1.58 1.51 3.41 2.09

PCA3 1.29 3.25 1.65 1.22 2.55 2.58

PCAT14 1.10 2.87 1.60 1.47 3.74 1.99

tRF-Phe-GAA-3b 1.43 2.56 1.52 1.65 2.16 1.42

tRF-Lys-CTT-5c 1.42 2.33 1.59 1.89 1.54 1.20

miR-375 2.51 3.94 2.18 2.10 1.73 1.89

miR-92a 2.10 3.17 2.75 2.01 2.74 2.40

miR-27a 0.60 2.73 1.29 0.75 2.75 2.20

miR-196 1.79 3.28 2.55 2.39 1.17 1.47

piR-28004 1.07 1.54 1.53 1.39 1.27 1.32

Average 1.41 2.83 1.80 1.60 2.53 2.01
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samples, the levels of NKX3-1 (FC = 5.42, p = 0.0003, AUC = 0.82)
and miR-27a (FC = 1.61, p = 0.0129, AUC = 0.73) were significantly
higher in PCa patients (Figures 3A,B). The levels of GLO1 (FC =
3.99, p = 0.0534, AUC = 0.68) were also higher in PCa patients, but
the difference was not statistically significant (Figure 3C). The levels
of several other biomarker candidates such as PCAT14 and
PMEPA1 were elevated in PCa plasma EVs yet failed to reach
statistical significance (Supplementary Image S3). None of the
potential RNA candidates reached statistical significance between
the two groups in urinary EVs (Supplementary Image S4).

Next, we aimed to validate these results in an independent validation
cohort of 31 PCa and 31 BPH patient plasma samples. At this point, we
did not include urinary EV samples as they showed significantly lower
diagnostic potential compared to plasma EVs. The level of NKX3-1
remained significantly higher in PCa patients compared to BPH patients
(FC = 1.76, p = 0.0493, AUC = 0.65) (Figure 3D). However, miR-27a
failed to discriminate between PCa and BPH in an independent cohort
(Figure 3E). In an independent patient cohort, the levels of GLO1 were
significantly higher in PCa patients compared to BPH patients
(FC = 3.10, p = 0.0017, AUC = 0.73) (Figure 3F).

Next, we combined the two top-performing candidates - NKX3-
1 and GLO1—in a biomarker model based on Gaussian identity
function. The two-biomarker model showed an AUC of 0.845
(Figure 4A) in the test cohort and an AUC of 0.713 in the
validation cohort (Figure 4B). The leave-one-out cross-validation
of the model yielded an AUC value of 0.765, thus further confirming
its viability (Figure 4C). PSA test showed a poor diagnostic value in
our cohort of patients as it could distinguish PCa from BPH with an

AUC of 0.634. Adding PSA to the two-biomarker model did not
improve the performance of the model in the test cohort (Figure 4E),
whereas it slightly increased its diagnostic performance in the
validation set by increasing the AUC from 0.713 to 0.757
(Figure 4F).

Prognostic performance of RNA biomarker
candidates

To assess whether the RNA biomarker candidates have the
ability to discriminate between low and high-grade prostate
cancer, we divided the data from 30 PCa Pre-Op plasma and
urinary EV samples, into two groups: high Gleason (HG)
(Gleason score 4 + 3, 4 + 5 and 4 + 5) and low Gleason (LG)
(Gleason score 3 + 3 and 3 + 4) groups, comprising of 15 patients in
each group. We found that the levels of NKX3-1 both in plasma and
urinary EVs tended to be higher in patients with HG group, yet did
not reach statistical significance (Figures 5A, B). Similarly, the levels
of MAZ and PCAT14 in urinary EVs tended to be higher in patients
with a high Gleason score (Figures 5C,D).

Expression levels and mutational analysis of
NKX3-1 in PCa

NKX3-1 gene encodes a transcription factor that functions as a
prostate-specific tumor suppressor and its protein levels are

FIGURE 2
Comparison of RNA biomarker levels in Pre-Op vs. Post-Op plasma and urinary EVs. Paired dot plots show copy numbers of RNA biomarkers per ml
of urine (A–D) and plasma (E) collected before and after radical prostatectomy in 30 PCa patients. Wilcoxon matched-pairs signed rank test was used to
assess the statistical significance of the differences between groups. p-value < 0.05 was considered significant.
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commonly decreased in PCa (Padmanabhan et al., 2016). We have
found that its mRNA is overexpressed in PCa as compared to
adjacent normal prostate tissues (Bajo-Santos et al., 2023) and
the levels of NKX3-1 mRNA are significantly higher in plasma
EVs from patients with PCa than BPH, and higher levels tend to
associate with higher Gleason score that seems to contradict with its
tumor suppressor’s role in PCa. To gain a comprehensive view of its
expression level in PCa, we analyzed the transcriptomic data
available at The Cancer Genome Atlas Program (TCGA).
Comparison of NKX3-1 mRNA levels in RNAseq data from

502 prostate adenocarcinoma cases and 52 normal prostate
tissues showed that its level in PCa tissues is substantially higher
than in normal prostate tissues (Mann-Whitney test, p = 6.65 × 10−5)
(Figure 6A). To search for somatic mutations in NKX3-1 gene, we
compared the RNA sequences obtained from PCa and normal
prostate tissues in our previous study (Bajo-Santos et al., 2023).
We were unable to identify any somatic point mutations in the
tumor tissues, whereas the frequencies of several common SNPs
suggested that one allele of NKX3-1 is lost in the tumor tissues of
4 out of 10 PCa patients (Figure 6B).

FIGURE 3
Comparison of RNA biomarker levels in patients with PCa vs BPH in plasma EV samples. Violin plots show copy numbers of RNA biomarkers NKX3-1
(A,D), miR-27a (B,E) and GLO1 (C,F) per ml of plasma in the test cohort (20 PCa, 20 BPH) (A–C) and validation cohort (31 PCa, 31 BPH) (D–F). Mann-
Whitney test was used to assess the statistical significance of the differences between groups. p-value < 0.05 was considered significant.
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Discussion

Liquid biopsies have emerged as an increasingly favored
alternative to traditional tissue biopsies for cancer diagnosis and
surveillance. Biological fluids like plasma and urine hold rich
reservoirs of cancer-related information, encompassing
circulating cancer cells, cell-free DNA and RNA, diverse proteins,
and EVs (Lu et al., 2019; Ramirez-Garrastacho et al., 2022a).
Previously deemed metabolic byproducts, EVs have been revealed
to harbor an extensive array of metabolites and nucleic acids derived

from their parent cells, assuming pivotal roles in intercellular
communication, cancer progression, and metastasis (Doyle and
Wang, 2019).

Several studies, including our recent study of breast cancer, have
shown that EV concentrations in body fluids are increased in cancer
patients as compared to healthy controls and their levels reflect
clinical events such as chemotherapy or surgery, thus suggesting that
the excess EVs are produced in the body due to the disease process or
treatment (Lázaro-Ibáñez et al., 2014; Cappello et al., 2017; Krafft
et al., 2017; Menck et al., 2017; König et al., 2018; Sadovska et al.,

FIGURE 4
RNA biomarker models. Generalized linear models combining the top two performing candidates NKX3-1 and GLO1 based on Gaussian identity
function show an ability to discriminate between PCa and BPH in a test cohort of 20 PCa vs 20 BPH patient plasma EVs (A) and a validation cohort of
31 PCa vs 31 BPH patient plasma EVs (B). Leave-one-out cross-validation of the model (C). ROC curve for the PSA test (D). A combined model of PSA
measurements and two RNA biomarkers (NKX3-1 and GLO1) showing the ability to discriminate between PCa and BPH in a test cohort of 20 PCa vs
20 BPH patient plasma EVs (E) and a validation cohort of 31 PCa vs 31 BPH patient plasma EVs (F).
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2022). Therefore, we expected that the EV numbers should decrease
after the surgical removal of the tumor. However, our data did not
reveal a statistically significant reduction in EV yields in patients
undergoing radical prostatectomy. This suggests that the prostate
and/or PCa does not produce sufficiently large amounts of EVs that
could substantially influence the overall EV counts in the body. This
could be attributed to the relatively small size of the prostate gland or
to lower EV secretion rates. Of note, we observed a tendency towards
elevated EV concentrations in patients with BPH compared to those
with PCa. While these differences did not reach statistical
significance, the observations align with findings from a prior
study suggesting that the enlarged prostate size observed in BPH
patients may contribute to an overall increase in EV counts (Salvi
et al., 2021). On the other hand, it can not be excluded that the
controversial findings regarding the EV counts are related to
technical issues such as co-isolation of lipoprotein particles that
could potentially introduce distortions to NTA measurements,
differences in the EV isolation and counting methods and pre-
analytical variables (Ramirez-Garrastacho et al., 2022a).

The primary goal of this study was to validate RNA biomarker
candidates identified in our previous sequencing study (Bajo-Santos

et al., 2023) and develop clinically applicable ddPCR-based assays
for the detection and monitoring of PCa. We utilized RT-ddPCR,
commonly employed for the absolute quantification of nucleic acids.
This method has gained significant traction in oncology, finding
application in various areas such as absolute allele quantification,
detection of rare mutations, assessment of copy number variations,
and DNA methylation analysis. Key benefits include its absolute
quantification, high specificity, and high sensitivity, facilitating the
precise analysis of minute copy numbers within a sample without a
need for standard curve construction. Its capacity to detect and
accurately quantify low copy numbers of target molecules aligns
seamlessly with EV-enclosed cancer biomarker analysis
requirements in liquid biopsies (Palacín-Aliana et al., 2021). The
main technical challenges we encountered during this study were
related to the fragmented nature of EV-enclosed RNAs and the
normalization of PCR data.

The greatest part of the biomarker candidates identified in our
EV RNA sequencing study were mRNAs. Alignment of EV RNA
reads against the reference sequences clearly showed that the EV
RNA is fragmented, however, it was not clear if the fragmentation is
entirely random or there are some preferential cleavage sites or

FIGURE 5
Comparison of RNA biomarker levels in patients with high Gleason (HG) and low Gleason (LG) scores. Violin plots show copy numbers of RNA
biomarkers per 1 mL of patient plasma (A) and urinary EVs (B–D). Mann-Whitney test was used to assess the statistical significance of the differences
between groups. p-value < 0.05 was considered significant.
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sorting mechanisms resulting in the enrichment of some specific
fragments in EVs. This represents a challenge in the PCR primer
design. Although we succeeded in developing several successful PCR
assays for the amplification of mRNA fragments, currently there are
no universal rules for selecting appropriate target sequences.

The foremost hurdle, however, lies in the normalization of PCR
data. In the RNA sequencing analysis, gene expression values can be
reliably normalized using global normalization approaches (X. Li et al.,
2020) allowing accurate comparison of the gene expression levels across
samples, however, these approaches can not be transferred to the PCR
results and currently no robust normalization approach exists for the
analysis of PCR results obtained from extracellular RNAs (Erdbrügger
et al., 2021). We explored three data normalization strategies to identify
an approach that minimized dataset variations. Ultimately, we
determined that normalizing data to the volume of the analyzed
biofluids yielded the least variable results. This normalization
technique appears to be effective for plasma samples, given that its
volume is generally less susceptible to variability, a trend documented in
earlier studies (Endzeliņš et al., 2017; Royo et al., 2020). However, urine
demonstrates greater heterogeneity in terms of composition and
concentration, influenced by diverse factors including patient diet,
health, and lifestyle, therefore such an approach is not optimal for
urinary EVs. Although several alternative normalization approaches for
urinary EVs have been proposed, currently none of them is widely

accepted in the EV research community and finding a robust
normalization approach is still an unmet need (Blijdorp et al., 2021;
Erdbrügger et al., 2021).

Furthermore, only a minor fraction of the total EVs in biofluids
appears to be derived from the prostate, rendering the detection of
prostate-specific RNA fragments exceedingly challenging. A
potential avenue for addressing this challenge is urine collection
subsequent to a digital rectal examination, as such prostate
stimulation has been demonstrated to elevate prostate-specific EV
counts in urine (Hendriks et al., 2016; Pellegrini et al., 2017).
Additionally, a lack of standardized methodologies for EV
isolation and the preservation of biological fluids underscores
another predicament. This lack of consensus contributes to
remarkable variation across EV research studies, often leading to
difficulties in replicating or validating results.

Urine is the most frequently employed biofluid in liquid biopsies
of PCa. Its merits encompass non-invasive collection, the capacity to
collect and conserve substantial volumes simultaneously, and a
comparatively limited count of contributing organs for urinary
EVs (Ramirez-Garrastacho et al., 2022a). It is a preferential
biofluid for the diagnosis and active surveillance of PCa, whereas
blood is likely to be the most suitable biofluid for the post-operative
monitoring of PCa patients (Ramirez-Garrastacho et al., 2022a). In
this study, we used blood plasma instead of serum. This decision was

FIGURE 6
Expression levels andmutational analysis of NKX3-1 in PCa tissues. (A) The box plot shows NKX3-1 mRNA levels in prostate adenocarcinoma (PRAD)
and normal prostate tissue (NT) gene expression datasets from TCGA database. Mann-Whitney test was used to assess the statistical significance of the
differences between groups. p-value < 0.05 was considered significant. (B) Paired dot plots show allele frequencies of 2 SNPs obtained from RNA
sequencing data in tumor and normal prostate tissues from 10 PCa patients.
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motivated by the observation that during the processing of serum,
EVs from platelets tend to co-isolate, thereby augmenting the total
EV count and subsequently introducing additional variability
(Coumans et al., 2017; Campos-Fernández et al., 2019). To the
best of our knowledge, a direct comparison of RNA biomarker levels
in urinary and plasma EVs has not been reported before. The levels
of the majority of biomarker candidates, except for NKX3-1, did not
decrease in the PostOp plasma EVs, suggesting that these RNAs are
released by various different organs, whereas the expression of
NKX3-1 is strictly prostate-specific (Gurel et al., 2010), therefore
its levels fell after prostatectomy. Together with GLO1, it showed
better diagnostic performance in distinguishing PCa from BPH as
compared to urinary EVs. On the contrary, in urinary EVs, the levels
of 4 biomarkers—tRF-Phe-GAA-3b and tRF-Lys-CTT-5c, miR-375-
3p and piR-28004 substantially decreased after the prostatectomy,
showing that in urine these RNAs are contributed mostly by the
prostate and/or PCa. However, none of them could distinguish PCa
from BPH. This is puzzling, since at least two of them—miR-375-3p
and piR-28004 were significantly overexpressed in PCa as compared
to normal prostate tissues (Bajo-Santos et al., 2023). The two tRFs
(tRF-Phe-GAA-3b and tRF-Lys-CTT-5c) have also been previously
found as significantly overexpressed in metastatic vs. organ-
confined disease and prognostic of biochemical recurrence
(Martens-Uzunova et al., 2012; Olvedy et al., 2016). Conceivably,
these RNAs are also overexpressed in BPH tissues, or the EV release
rate in urine from PCa tissues is lower than that from BPH tissues.
These results seem to contradict the findings from our previous
study, where urinary EVs demonstrated a notably higher
enrichment in PCa and/or prostate biomarker candidates (Bajo-
Santos et al., 2023). This disparity most likely is attributed to the
challenges encountered in normalizing urinary EV PCR results.

Out of our 15 RNA biomarker candidates, mRNAs NKX3-1 and
GLO1 showed the highest diagnostic value. NKX3-1 is an androgen-
regulated gene with prostate-specific expression pattern (Gurel et al.,
2010). It is located on chromosome 8p21.2, a region that is deleted in up
to 86% of PCa cases (Vocke et al., 1996). It encodes a homeobox-
containing transcription factor that negatively regulates epithelial cell
growth and prostate morphogenesis thus functioning as a prostate-
specific tumor suppressor (He et al., 1997; Papachristodoulou et al.,
2021). However, we found that NKX3-1mRNA is overexpressed in PCa
tissues as compared to normal prostate tissues, and its level in plasmaEVs
is increased in patients with PCa as compared to BPH.We reasoned that
the transcription rate of NKX3-1 is increased in androgen-sensitive PCa
cells, whereas the protein functions and/or levels may be affected by
mutations or post-translational modifications (Padmanabhan et al.,
2016). Indeed, the analysis of transcriptomic data from TCGA
database confirmed that NKX3-1mRNA levels are increased in PCa
as compared to normal prostate. In line with previous studies (Voeller
et al., 1997), we did not find somatic pointmutations in the coding region
of NKX3-1, whereas we identified a pattern of SNPs suggesting a LOH
affecting this gene in 4 out of 10 PCa patients analyzed. Furthermore, it is
also possible that NKX3-1mRNA is increasingly degraded and/or sorted
into EVs to deplete its intracellular concentration in PCa cells.
Furthermore, finding higher NKX3-1 levels in plasma EVs in patients
with aggressive PCa is aligned with a previous study showing that high
NKX3-1 levels in cell-free plasma are associated with aggressive PCa
characteristics (De Souza et al., 2020). Additionally, higher EV-enclosed
NKX3-1 levels originating from PCa cells compared to normal prostate

cells had also been previously reported, aligning with our results (Lázaro-
Ibáñez et al., 2017).

GLO1 codes the enzyme glyoxalase 1, a part of the glyoxalase
system in the cytosol, which breaks down reactive aldehyde
metabolites (Thornalley, 2003). Several studies have shown that it
is overexpressed in high grade prostate cancer tissues and indicates
early recurrence (Baunacke et al., 2014; Burdelski et al., 2017; Rounds
et al., 2021). Despite our results not showing a statistically significant
difference betweenGLO1 levels in high and low-grade PCa EVs, it was
significantly higher in PCa patient plasma EVs than in BPH patients.

Several previous studies have explored the diagnostic and prognostic
relevance of EV-enclosed RNAs in PCa patients (Ramirez-Garrastacho
et al., 2022b). One of the most extensively studied biomarkers is
PCA3—an lncRNA whose level in urinary EVs can differentiate
between healthy men and PCa patients (Motamedinia et al., 2016),
and between PCa patients with GS ≤ 6 vs.GS ≥ 7 (Donovan et al., 2015).
Individually, PCA3 could distinguish biopsy-confirmed healthy men
and PCa patients with an AUC of 0.681 (Motamedinia et al., 2016),
whereas in combination with ERG mRNA and SPDEF as normalizer, it
constitutes the ExoDx Prostate test that is routinely used for detection of
high-grade PCa in men over 50 years of age and gray zone PSA levels
(2–10 ng/mL), and informs whether to proceed with prostate biopsy
(Tutrone et al., 2020). In the current study, we assessed its ability to
differentiate between PCa and BPH. Although a fraction of PCa patients
had elevated levels of PCA3 both in plasma and urinary EVs, its
diagnostic value was moderate with AUC of 0.56 and 0.57 in plasma
and urinary EVs, respectively. The best diagnostic biomarkers found
in this study were GLO1 and NKX3-1 which individually could
distinguish PCa from BPH in the validation cohort with an AUC
of 0.726 and 0.645, respectively. Combining both biomarkers in a
biomarker model yielded an AUC of 0.713 in the validation cohort,
whereas adding the PSA levels to the model increased the AUC to
0.757 thus showing enhanced diagnostic performance as compared to
individual markers. This observation aligns with findings from several
other studies, advocating that the synergistic utilization of multiple
markers is a more efficient approach to cancer detection (Prensner
et al., 2012; Murphy et al., 2015; Davey et al., 2020; Ramirez-
Garrastacho et al., 2022a). For instance, Davey et al. developed a
seven mRNA biomarker model (FOLH1, HPN, CD24, TMPRSS2-
ERG overexpressed; ITSN1, ANXA3, SLC45A3 underexpressed) that
could distinguish PCa from benign conditions with AUC of 0.825.
Furthermore, combining this model with two miRNAs yielded an
AUC of 0.843 (Davey et al., 2020).

Taken together, in this study, we tested the diagnostic and
prognostic performance of 15 RNA biomarker candidates by RT-
ddPCR in independent cohorts of PCa and BPH patients. This
resulted in the validation of two novel PCa biomarkers - GLO1 and
NKX3-1 mRNAs that are overexpressed in PCa tissues, known to
functionally contribute to the PCa development, and have higher levels
in plasma EVs fromPCa patients than BPHpatients. In addition, higher
levels of NKX3-1 in plasma and urinary EVs tended to associate with
aggressive PCa. A biomarker model combining GLO1, NKX3-1 and
PSA could distinguish PCa from BPH with an AUC of 0.76 in an
independent validation cohort. We envision that these biomarkers
could be of use for the development of liquid biopsies for the
detection of clinically significant PCa, deciding on the need of
prostate biopsies in men with elevated PSA levels and active
surveillance of patients with low-grade disease.
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SUPPLEMENTARY IMAGE S1
Comparison of RNA biomarker levels in Pre-Op vs. Post-Op plasma EVs.
Paired dot plots show copy numbers of RNA biomarkers per ml of patient
plasma collected before and after radical prostatectomy in 30 PCa patients.
Wilcoxon matched-pairs signed rank test was used to assess the statistical
significance of the differences between groups. p-value < 0.05 was
considered significant.

SUPPLEMENTARY IMAGE S2
Comparison of RNA biomarker levels in Pre-Op vs. Post-Op urinary EVs.
Paired dot plots show copy numbers of RNA biomarkers per ml of patient
urine collected before and after radical prostatectomy in 30 PCa patients.
Wilcoxon matched-pairs signed rank test was used to assess the statistical
significance of the differences between groups. p-value < 0.05 was
considered significant.

SUPPLEMENTARY IMAGE S3
Comparison of RNA biomarker levels in patients with PCa vs. BPH in plasma
EV samples. Violin plots show copy numbers of RNA biomarkers per ml of
patient plasma in the test cohort (20 PCa, 20 BPH). Mann-Whitney test was
used to assess the statistical significance of the differences between groups.
p-value < 0.05 was considered significant.

SUPPLEMENTARY IMAGE S4
Comparison of RNA biomarker levels in patients with PCa vs. BPH in urinary
EV samples. Violin plots show copy numbers of RNA biomarkers per ml of
patient urine in the test cohort (20 PCa, 20 BPH). Mann-Whitney test was
used to assess the statistical significance of the differences between groups.
p-value < 0.05 was considered significant.
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