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Abstract: Bone fractures and bone defects affect millions of people every year. Metal implants
for bone fracture fixation and autologous bone for defect reconstruction are used extensively in
treatment of these pathologies. Simultaneously, alternative, sustainable, and biocompatible materials
are being researched to improve existing practice. Wood as a biomaterial for bone repair has not been
considered until the last 50 years. Even nowadays there is not much research on solid wood as a
biomaterial in bone implants. A few species of wood have been investigated. Different techniques of
wood preparation have been proposed. Simple pre-treatments such as boiling in water or preheating
of ash, birch and juniper woods have been used initially. Later researchers have tried using carbonized
wood and wood derived cellulose scaffold. Manufacturing implants from carbonized wood and
cellulose requires more extensive wood processing—heat above 800 ◦C and chemicals to extract
cellulose. Carbonized wood and cellulose scaffolds can be combined with other materials, such as
silicon carbide, hydroxyapatite, and bioactive glass to improve biocompatibility and mechanical
durability. Throughout the publications wood implants have provided good biocompatibility and
osteoconductivity thanks to wood’s porous structure.

Keywords: wood implants; bone repair; biocomposites; osteosynthesis

1. Introduction

Bone fractures first drew prehistoric humans’ attention up to 46 thousand years ago
during the Early Upper Paleolithic age, the period from which the first healed bone frac-
tures were found by archeologists [1]. After thousands of years of using traction and
immobilization as the only treatment for bone fractures, the first true external fixation
was applied only 120 years ago. That was developed by a Belgian surgeon Albin Lam-
botte. Lambotte who also introduced the term “osteosynthesis”—fixation of bone by using
mechanical devices [2]. At the beginning of the 20th century, with the development of
antiseptics, anesthesiology, and bone imaging possibilities, the modern principles of the
internal fixation of fractures were developed. The first material for osteosynthesis implants
was nickel-coated steel, developed in the 19th century [3,4]. Other metals such as silver [5],
aluminium, and brass [6] have been used to produce different bone implants. Nevertheless,
these materials were found not to be fully suitable due to inadequate mechanical properties
and corrosion. The first successful material was stainless steel, later joined by titanium
and cobalt-chromium alloys [7]. Although the problem with obvious and quick corrosion
was resolved, there are still a few debatable issues. First, the density of a metal alloys is
up to three times higher than cancellous bone [8,9]. Thus, aseptic loosening of the metallic
implants is considered a possible complication within 15 years after surgery [10]. Second,
bio-corrosion of stainless steel [11] and titanium [12] alloys is being investigated as well.
Demand for non-metallic implant materials is growing, not only because of bone damage
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over time due to the loosening and biocorrosion of implant material, but also because of the
increased use of modern medical diagnostic systems, e.g., nuclear magnetic resonance [13].
Metal implants cause significant artifacts in computer tomography and magnetic resonance
images. The lower image quality of artifacts cause blurring. In the last decades, numerous
studies have been published about reducing the effects of artifacts. However, the issue is
still present in everyday clinical practice [14,15].

Aside from bone fractures, bone defects are a common issue in orthopaedic and re-
constructive surgery. Bone defects can be caused by severe injuries, congenital anomalies,
and tissue resection due to oncological masses. Although bone has great capabilities for
rejuvenation, the healing of large defects is challenging. Treatment with bone xenografts
(grafts from animals) from dogs and goats for cranioplasty was first described more than
500 years ago by Ottoman empire surgeon Ibrahim Bin Abdullah [16]. Nowadays, bone
defect reconstruction still relies mostly on autologous (from the patient), allogeneic (from
another human donor), and xenogeneic (animal-derived) bone grafts. For very extensive de-
fects, vascularized bone flaps are harvested from the patient. Harvesting bone tissues from
the patient adds additional surgical sites, with possible complications. Using allogeneic
and xenogeneic grafts posts immunological challenges, as well as logistical and ethical
issues [17]. In attempts to improve bone defect reconstruction, different biomaterials have
been widely investigated—calcium phosphates [18,19], bioactive glass [20], collagen [21],
silk fibroin [22], etc.—for potential use in clinical practise [23].

Great interest has been observed among industry, researchers, and society towards
new materials produced from natural sources, due to several reasons, e.g., topicality of
environmental protection issues, new regulations, unsustainability of fossil fuels and their
reserve, increasing plastic pollution, and global concepts of circular bio-economy [24].
Reducing emissions in the next decade is crucial for Europe, which intends to become
the world’s first climate-neutral continent by 2050 by making the European Green Deal
a reality [25]. Concerns about environmental issues have encouraged research on bioma-
terials, including bone implants [26]. Over the last few years, comparative studies have
been carried out on the ecological footprints of raw materials for bone implants [26,27],
as well as studies on the use of natural or bio-based polymers in bone tissues [27–29], the
synthesis of hydroxyapatite from sustainable natural raw materials [30,31], and the use
of new technologies such as 3D printing as a solution for a sustainable and circular econ-
omy [32]. Materials obtained directly from nature are being studied as well, e.g., corals [27].
However, the materials developed thus far do not provide sufficient mechanical strength
for osteosynthesis implants compared with metal implants. These issues promote further
investigations for alternative implants’ material.

2. Similarities between Wood and Bone

Humanity has known about wood as a biomaterial since the Stone Age, with wood
has played a major role in humanity’s greatest achievements—from discovering fire to
creating transport. Wood is an anisotropic natural material usually obtained from the trunk
of a tree. It can be defined as a heterogeneous composite that consists mainly of natural
polymers such as cellulose (40–50%), hemicelluloses (15–25%), and lignin (15–30%) [33,34].
Tree cross-sections can be distinguished into three components—the bark, cambium, and
wood parts—xylem. The bark consists of a cork layer on the outside and a phloem layer on
the inside. The cambium, located between the bark and the xylem, consists of living cells
that form the new xylem and phloem layers. Xylem has two wood parts—sapwood and
heartwood. The sapwood consists of dead cells and a small number of living parenchymal
cells. It acts as food storage, as a water and nutrients transporter, and as mechanical support
for the tree. The heartwood consists entirely of dead cells and provides only a support
function for the tree [35].

Similar to wood, bone is also an anisotropic heterogeneous composite material, as it
consists of about 60% inorganic material (calcium and phosphate in a form of natural or
calcium-deficient hydroxyapatite), 30% organic material (collagen) and 10% water [36–38].
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Similar to wood, which fulfills the function of support in a tree, the main function of bone
is to support the static and movement functions of the body. Bone also acts as storage for
minerals such as calcium and phosphate, as well as in the maintenance of homeostasis [39].
Three parts of bone can be observed in the cross-section—cortical bone, also called dense or
compact bone, trabecular bone, also called spongy or cancellous bone, and bone marrow
cavity. Bone tissue contains three main cell types: osteoblasts, osteoclasts, and osteocytes.
Osteoblasts are responsible for bone formation, while osteoclasts are cells that resorb bone.
Bone homeostasis is maintained by the connection between bone formation and bone
resorption (bone turnover). Osteocytes are cells that are found in fully formed bone and
make up most of the bone [40]. Similarities between wood and bone have been observed
and were described as early as the invention of the microscopic magnification itself. The
pioneer of microscopy, Antonie van Leeuwenhoek, described the analogy between the
osteoid bone structure and the fibre structure of wood [41]. Since then, several authors
have continued researching similarities between wood and bone, revealing the hierarchical
macroscopic and microscopic structures of both, as well as functional similarities such
as biomechanical characteristics, remodeling, and liquid transportation abilities [42–46].
Figure 1 shows the structural similarity between cortical bone and wood at the micro and
nano level.
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The strength of both cortical bone and wood is ensured by its structural construction.
The cortical bone base is formed by osteons, while wood consists of wood cells. Both
the osteon and the tree cell are oriented in the direction of the long axis of the bone and
wood, respectively, and are composed of several concentric layers of parallel fibers or fibrils.
Each layer is oriented in different directions, thus providing mechanical strength. In bone,
the layers are formed of collagen fibers, while wood cells are composed of bundles of
cellulose micro fibrils. Collagen fiber consists of collagen fibrils constructed from triple
helix collagen molecules and mineral nanocrystals, while cellulose microfibril is constructed
from amorphous and crystalline parts of parallel cellulose molecules [36,47,48]. Based on
similarities between wood and bone, wood has been used as a testing model for orthopedic
implants [49]. Despite the structural similarity between wood and bone, solid wood has
not been amply considered as a possible biomaterial for bone implants. Only in recent
decades has wood been studied by a few authors as a possible implant material.
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Considering the mentioned topical problems, this review presents a brief overview of
the use of wood as a biomaterial for bone implants, emphasizing the wood processing and
current research methodologies.

3. Wood Species for Bone Implants

Individual species of trees have been studied as a source of biomaterial. Most of the
published studies have main purpose of creating biomaterials for bone defect substitution
and rarely for creating wood-based orthopedic implants.

3.1. Birch

One of the first studies regarding wood as a possible implant material was performed
by Kristen, Bösch et al. using birch wood [50]. Birch is one of the most widespread and
economically important species of deciduous trees in Europe and Scandinavia. Silver
birch (Betula pendula) and European white birch (Betula pubescens) are among the most
common birch species found in most of Europe, up to Central Siberia. Betula pubescens,
which is the northernmost tree species, is more common in the Northern and Eastern parts
of Europe. Betula pendula is more common in the southern regions of Europe, such as the
Iberian Peninsula, southern Italy, and Greece [51]. Birch wood has an average density of
600–650 kg/m3 and a high Jank hardness of 4000–5000 N, and contains little extractive
material, which makes this wood well suited for bone implants [52,53]. The early studies
were conducted in vivo using rabbits. Birch implants were pre-treated with ethanol and
placed transcortically into rabbit tibias. Evaluation was done after 3, 5, 14, and 32 weeks.
Although the tissues produced a foreign body reaction, a new bone formed around the
wood implants. Additionally, bone ingrowth into the implant’s pores was recorded [54].
Similar ethanol pre-treated birch implants were implanted into a rabbit’s soft tissues. After
controls within 2, 6, 12, and 30 weeks, it was concluded that ethanol pre-treatment was not
sufficient to prevent a foreign body reaction [50]. Years later, Rekola, Aho et al. published a
novel wood pre-treatment method—preheating of birch implants at different temperatures—
140 ◦C, 200 ◦C, and 220 ◦C for 2 h. The implants were placed into the drilled cavities of
rabbit femurs and observed after 4, 8 and 20 weeks detecting the bone ingrowth. Preheated
birch implants showed better osteoconductivity compared to untreated implants. However,
when applying the highest temperature of 220 ◦C, the biomechanical characteristics of the
implants were decreased [55]. In vitro studies were performed by immersing the birch
implants into simulated body fluid (SBF) for 63 days at 37 ◦C. It was documented that
immersion in the SBF significantly decreases the biomechanical properties of the untreated
implants, while heat pre-treated implants preserve these properties [56,57].

3.2. Ash

Ash is a tree of the olive family that is widespread in Europe, Asia, Canada, and North
America. As a hardwood with a low content of extractive substances, a high density of
600–680 kg/m3, strength, and flexibility, it is suitable for bone implant materials [58]. The
in vivo study with ash implants was conducted simultaneously with early birch studies.
Ash specimens were ethanol-pretreated and fixed in rabbit calcaneus bones with Achilles
tendons reattached and analyzed after 5 and 14 weeks. The ethanol pre-treatment of ash
resulted not only in bone ingrowth, but the tendons’ tissues grew into the wood pores as
well, along with moderate foreign body reaction [59].

3.3. Lime, Willow, and Fir

Spruce wood is widespread in Scandinavia, Northern Eastern Europe, North America,
Canada, and Japan, and is one of the most economically important coniferous wood
species [60]. The white willow (Salix alba) is the most well-known of the willows, widely
distributed throughout Europe except for the most northern regions. The northern part of
Europe, where willow is common, includes the British Isles, the Netherlands, and the Baltic
coast (Latvia and Lithuania). Willow is also found in Mediterranean regions, as well as in
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North Africa (Morocco and Algeria) [61]. Lime trees are common in Eastern North America
(Tilia americana) and Europe (Tilia Europen; hybrid wood). All named wood species have
a low density—400–450 kg/m3 for fir and willow, 450–550 kg/m3 for lime wood. These
wood species, together with birch and ash, were used to fix fractures in rabbit femurs by
Horsky, Huraj, Paukovic. Implants were untreated before implanting in vivo. Birch, ash,
and fir were well tolerated, while lime and willow caused acute inflammatory reaction,
indicating that differences in wood species meant that not all species would be suitable for
bone implants [62]. Although all the mentioned wood species contain a high extractive
content, they differ in their composition. Fir extract contains the most lignans [63], while
willow extracts contain a large amount of salicylic compounds, flavonoids, and tannins.
These substances are bioactive compounds characterized by antipyretic, analgesic, anti-
inflammatory, antirheumatic, and anticoagulant properties. As with all bioactive substances,
they can be toxic at certain levels [64,65].

3.4. Juniper

Juniper is the world’s most widespread and northernmost coniferous tree. It is com-
mon both in Europe and Asia, as well as in North America and Japan. Juniper can be found
both in the farthest North areas of Scandinavia and in the mountain areas of the warmer
regions of Southern Europe. The density of juniper is 450–600 kg/m3 [66]. Juniper has
long been studied for its antibacterial properties, but not for use in bone implants. The
essential oils in juniper wood can also be toxic at high dosages; therefore, pre-treatment is
required [67]. A unique in vivo study considered juniper wood for potential orthopedic
hardware. Hip prostheses were crafted and pre-treated in boiling water for 10 min. The
proximal part of rabbit femurs were resected and hemiarthroplasty with the juniper prosthe-
ses was performed. Rabbits were allowed to bear weight with no restrictions. Histological
analysis was done after 3, 6, 18, and 36 months. No foreign body reaction was documented
in any specimens. Initial bone ingrowth was detected after 6 months. After 3 years, wood
implants were fully integrated with bone tissues (Figure 2). Essential oils from juniper
were tested for their capacity to induce a toxic response in rats and was demonstrated
to be well tolerated, especially when released slowly [68]. Almost 20 years later, prelimi-
nary studies have been carried out for the possible development of bone implants from
partially delignified and compressed solid juniper wood, thus improving the mechanical
properties of the implant. A compressed wood density of 1170 kg/m3 was achieved (100%
increase compared to natural juniper wood). The modulus of rupture was increased by
85%, reaching 174 MPa, and the modulus of elasticity by 620%, reaching 12,500 MPa [69].

3.5. Carbonized Wood

Another trial for the development of bone implants has been proposed by pre-treating
wood at high temperatures to create a charcoal-type material. In one of the earliest studies,
wood from clematis was carbonized at 850 ◦C for 5 h. Samples were implanted in vivo into
rabbit bone, whose tissue was able to grow into the carbonized wood [70]. A similar in vivo
study was performed with bamboo charcoal. The results showed that charcoal bamboo as
a bone substitute has good biocompatibility and osteoconductivity [71]. Although pure
carbonized wood had good biocompatibility and osteoconductivity, the complete loss of its
mechanical properties made it an impractical material. Years later, the mechanical prop-
erties of pure carbonized wood were improved by an impregnation with silicon carbide
(SiC) to produce a biomaterial called ecoceramics. In the preparation process, natural wood
was pyrolyzed at 1000 ◦C using argon gas; the natural wood lost around 75% of its weight
and 60% of its volume as a result of the treatment. The remaining scaffold was infiltrated
with melted Si at 1550 ◦C. Si reacts with carbon in pyrolyzed wood to form SiC. Different
wood species have been used to produce wood-based ecoceramics, for example, maple [72],
eucalyptus [73], mango [74], oak [75], beech [76], pine [77], and others [78]. The technique
preserved the porous structure of the wood while adding the rigidity of SiC. It is also a
light-weight material, with density around 1100–2300 kg/cm3, depending on the selected
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wood [74–76]. In addition, ecoceramics have great heat and electric resistance [79,80]. Due
to various properties, ecoceramics have attracted more interest of researchers in civil [81],
aeronautical [82] and electronic [83] engineering, and only a small number of studies con-
sider ecoceramics as a material for medical applications. One in vivo study has been done
with SiC scaffolds that were implanted in sheep metatarsal bones. Histological analysis
was performed after 4, 8, 12, and 48 weeks. Analysis revealed good scaffold-to-bone ad-
hesion, and new bone ingrowth inside the scaffolds was documented as well [84]. Since
then, few authors have proposed combining wooden scaffolds with other biomaterials.
In one study, SiC scaffolds derived from beech, eucalyptus, and sapele were combined
with bioactive glass. An in vitro study with MG-63 osteoblasts showed good cellular
attachment to both coated and uncoated SiC scaffolds. Additionally, the osteoblasts prolif-
erated equally in standardized environments and on the surface of bioactive-glass-coated
SiC scaffolds [85]. In another study, carbonized wood scaffolds derived from cane and
pine [86,87] or rattan [88] were combined with hydroxyapatite (HA). The obtained sam-
ples showed the preserved porous structure and improved mechanical properties; the
compressive strength reached 0.4 MPa and the tensile modulus increased 2–3 times [86–88].
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3.6. Cellulose-Based Scaffold

Few authors have considered wood as a base for cellulose-based scaffolds. To create
such scaffolds, more extensive wood processing is required. Firstly, wood is processed into
cellulose. Cellulose is a natural linear cell polysaccharide consisting of glucose (C6H10O5)n.
(Figure 3). It is the main component of cell wall in green plants and algae, and bacteria
produce cellulose to form a biofilm as well. While the purest natural form of cellulose is
cotton, where cellulose comprises about 90% of cotton’s mass, wood is made of around
57% cellulose and remains the main source for producing cellulose [89]. As a natural raw
material, cellulose has been used for fabrics and papers for hundreds of years, but only
185 years ago, in 1838, the chemical structure of cellulose was discovered and described by
French chemist Anselme Payen [90]. Since then, production of cellulose from wood stock is
performed by chemically dissolving unwanted components such as lignin, short-chained
polymers, etc. Cellulose is widely used for its porous structure and insolubility in water
and organic substances in medical filters [91], pharmacy [92], and wound dressings [93].
In the last few decades, cellulose has also attracted researchers’ attention as a potential
biomaterial for medical applications, similar to using wood as an implant material. In
the 1960s, implantation of cellulose sponges was used to study tissue inflammation and
granulation formation shortly after implantation [94]. Years later, in the 1990s, researchers
began to investigate the long-term effects of cellulose implantation. Märtson, Viljanto et al.
used industrial soft cellulose sponges derived from eucalyptus, birch, or oak. Cellulose
sponges were tested in vivo in rat soft tissue, and histological examinations were performed
consecutively after 1–60 weeks. Histological evaluation revealed that the inflammatory
response of the surrounding tissues subsided after 4–6 weeks and revealed good connective
tissue ingrowth into the cellulose sponges. The researchers also detected a slow resorption
and degradation of the pure cellulose sponges [95,96]. In addition, the biocompatibility of
cellulose sponges with bone tissue was investigated in vivo; cellulose sponges were tested
into the femoral bone cavity of rats. Bone ingrowth into cellulose sponges was recorded
after 4–6 weeks [97]. Later researchers started combining cellulose fibers with other bio-
materials. An in vitro study was performed with chondrocytes from the bovine knee joint.
Cellulose scaffolds were exposed to saturated calcium hydroxide (Ca(OH)2) solution, then
immersed in supersaturated simulated body fluid (SBF). Thus, a calcium phosphate coating
was created. Although the cellulose and calcium phosphate scaffolds caused an acidic
reaction in solution and the pH had to be adjusted with calcium hydroxide [98], better
cellular adhesion was detected compared to untreated cellulose scaffolds. In another study,
cellulose fibers were impregnated with hydroxyapatite particles. Tomilla, Ekholm et al.
published two studies on cellulose coating with hydroxyapatite derived from bioactive
glass. Bioactive glass S53P4 (Abmin Technologies Ltd., Turku, Finland) was dissolved in
SBF, and cellulose sponges were immersed in the SBF solution at 37 ◦C for 24 h. After 24 h
of immersion in SBF, calcium hydroxyapatite was formed on the surface of the scaffold. In
an in vivo study with scaffolds implanted in rat soft tissue, an acute inflammatory response
was reported on the first day after implantation. More extensive connective tissue formation
was observed in the hydroxyapatite layer, while the inflammatory response disappeared
within 14 days [99]. In another in vivo study, biomimetically coated cellulose sponges
with silica-rich apatite were implanted into femoral bone defects in rats. After 12 weeks
post-implantation, apatite-coated cellulose sponges did not significantly improve bone
ingrowth compared to uncoated cellulose sponges. [100]. Later, Daugela, Pranskunas et al.
investigated cellulose-based scaffolds substituted with micro- and nano-hydroxyapatite
particles. An in vitro study was performed on human-like osteoblastic cells (Mg-63) to
determine cytotoxicity and cell adhesion. According to the results, cell adhesion was im-
proved by hydroxyapatite nanoparticles compared to cellulose-based scaffolds substituted
with hydroxyapatite microparticles, and no cytotoxic response was detected. Similar to
the in vitro results, scaffolds with hydroxyapatite nanoparticles significantly improved
bone tissue ingrowth in rabbit calvaria bones [101]. Further studies also involved cellu-
lose derivatives; carboxymethyl cellulose scaffolds were prepared using a freeze-drying
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process. An in vitro study showed that prepared scaffolds supported the proliferation
and differentiation of Saos-2 cells, and extensive tissue proliferation was detected in rat
subcutaneous tissues in vivo [102]. Cellulose scaffolds have also attracted interested as a
localized drug-delivery system in damaged bone. Different studies have been published
on the delivery of growth factors, bioactive proteins, antibiotics, and anti-inflammatory
drugs [103].
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Table 1 summarizes brief facts about the wood species studied in the literature.

Table 1. Summary of potential wood species for bone implants.

References Wood Species Study Design Results

Kristen, Bosch et al., 1977 [54]

Birch

In vivo Foreign body reaction after
ethanol pre-treatment

Aho, Rekola et al., 2007 [55] In vivo
After heat pre-treatment good
biocompatibility and
osteoconductivity

Bosch, Kristen et al., 1979 [59] Ash In vivo
After ethanol pre-treatment
good biocompatibility and
osteoconductivity

Horsky, Huraj et al., 1987 [62]

Fir In vivo With no pre-treatment good
biocompatibility

Lime In vivo With no pre-treatment acute
foreign body reaction

Willow In vivo With no pre-treatment acute
foreign body reaction

Gross and Ezerietis, 2003 [68]

Juniper

In vivo
After heat pre-treatment good
biocompatibility and
osteoconductivity

Andze, Andzs et al., 2022 [69] Mechanical studies

Partial delignification of wood
and subsequent densification
showed improved mechanical
properties comparable to bone

Kosuwon, Laupattarakasem et al.,
1994 [71] Bamboo In vivo

Carbonized charcoal showed
good biocompatibility and
osteoconductivity
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Table 1. Cont.

References Wood Species Study Design Results

de Carlos, Borrajo et al., 2006 [85] Beech
In vitro

SiC scaffolds allowed good
cell proliferationSapele

Qian, Kang et al., 2008 [86]
Tampieri, Sprio et al., 2009 [87]

Cane

Mechanical studies

SiC scaffolds combined with
other biomaterials provided
significantly improved
mechanical resistance

Pine

Finardi and Sprio, 2012 [88] Rattan

4. Discussion
4.1. Advantages and Disadvantages of Wood as Bone Implants

The most important advantage of wood as a bone implant is the structural similarities
between bone and wood, described by the pioneer of microscopy, Anton van Leeuwenhoek,
back in 1693. Since then, the structural and functional similarities have been described by
many other authors [41–44,104]. This was discussed in the previous sections.

Wood is a natural composite material consisting of three main components—cellulose,
hemicelluloses and lignin [105]. Simply, each of the components gives the wood specific
mechanical properties—strength, flexibility, and stiffness, respectively. The chemical com-
position of wood is variable and depends on the wood species, age, genetic factors, and
growing conditions. [106–108] In principle, this could be considered a disadvantage, but
this property of wood as a biomaterial is also an advantage. Knowledge of these effects
on wood properties can help in finding suitable wood materials for a specific application.
Furthermore, chemical [109,110], thermal [111,112], or enzymatic [113,114] treatment can
change the chemical composition of wood, thus affecting its mechanical properties.

Porosity is another advantage of wood as a biomaterial. Pore size distribution in the
wood varies from 1 nm to 100 µm and can be classified into macro-, meso- and micropores.
Porosity is inversely proportional to wood density [110,115]. Osteoblasts are approximately
10–50 µm in size and require 100–200 nm pores for ingrowth and bone regeneration. In the
pores with a smaller size, the formation of osteoid and fibrous tissue occurs [116]. It can be
concluded that the ingrowth of bone cells will occur more easily in less dense wood. At the
same time, wood density directly affects the mechanical properties of wood. The porous
structure of wood easily lends to impregnation and can be used to introduce bioactive
substances or drugs for bone regeneration.

The biodegradation of wood is one of the possible reasons why wood as an implant
material causes skeptical reaction. To justify this property of wood, it is important to
consider that wood decay occurs at a certain humidity and in the presence of oxygen. In a
highly wet and oxygen-free environment, wood biodegradation occurs very slowly and
wood can be preserved for hundreds of years [117,118]. Water content in human body
lean mass (or fat-free mass) is around 70–75%; thus, it is considered a non-oxygen wet
environment when inserting a wood implant [119].

Shrinking and swelling in water is a typical characteristic of wood. The amount of
water in the wood is significantly affected by the humidity and temperature of the envi-
ronment. Accordingly, in a dry environment, the wood dries quickly and cracks form;
conversely, in a water environment, the wood absorbs moisture and swells. This characteris-
tic complicates the use of wood materials and requires evaluation of the preparation process
of wood samples. The water content of natural green wood is approximately 60–70%. The
moisture content of dry wood is approximately 7%. Considering that the water content in
human muscle mass is 70–75%, it is recommended to keep the moisture content in wood
above 50% when developing a wood implant, thus preventing possible problems that may
arise due to shrinking and swelling. It should be noted that the water content in solid wood
affects its mechanical properties. The elasticity of wood is directly proportional, while the
strength is inversely proportional to the water content of the wood [120,121].
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Other disadvantages of wood as a biomaterial for bone substitution are its uneven and
different properties, variable density and chemical composition depending on the wood
species, growing conditions, genetic aspects, and age [105,107,108]. These makes it difficult
to obtain materials with the same properties. One of the solutions is to use wood from
plantations or to obtain pre-treated wood.

Apart from the basic components of wood—cellulose, hemicellulose, and lignin—it
also contains a small number of inorganic compounds (up to 1%) and soluble organic
compounds called extractives. The presence of extractives in wood samples can be critical
for their use in bone implants. The extractives consist of mixtures of various components,
from relatively low-molar-mass molecules to the higher molar-mass substances [122] such
as fats, fatty acids, waxes, sterols, terpenic compounds, phenolic compounds, pectins,
flavonoids, stilbenes, tannins, etc. [120] Some of the compounds are bioactive substances
and, depending on the concentration, can be either therapeutic or toxic to the human
body. Extractives can be divided into groups based on their chemical type—lipophilic
or non-polar and hydrophilic or polar compounds. Each of the mentioned groups can
be dissolved in different solvents—organic solvents or water. To eliminate all extractives,
consecutive extraction is performed using different solvents of increasing polarity, e.g.,
dichloromethane, acetone, ethanol, and water [123]. Since the human body comprises
70–75% water, separation of the water-soluble extractives from the wood before implanta-
tion is critical. Pre-treatment of wood with both ethanol and water is necessary so that the
extractives do not cause toxic reactions.

As a biological material, wood also provides a habitat for various microorganisms,
such as fungi and bacteria, that are not desirable in bone implant material. Considering the
above, special attention should be paid to the chosen sterilization methods. Not all popular
bone implant sterilization methods are applicable to wood samples. Such classical methods
as UV, ethanol, or ethylene oxide treatment [124], autoclaving, or steam treatment [125]
cannot be used for wood materials. Wood is destroyed under the influence of UV [126],
swelling occurs during water vapor treatment, and wood hydrolysis begins at elevated
temperatures above 140 degrees [111]; but in the case of ethanol or ethylene oxide (toxic)
treatment [124], it could be problematic to ensure the removal of all substances from the
sample due to its porous structure. It is possible to use gamma irradiation or microwave
treatment [127], but in this case, a suitable processing time should be chosen, as the wood
may be destroyed due to heating (more than 140 degree) [128,129]. Sterilization with
gaseous phase compounds such as supercritical CO2, hydroxyl peroxide, or peracetic acid
is applicable to porous fibrous materials, including wood [124,130,131].

Additionally, greater mechanical properties and density are needed to use wood in
osteosynthesis implants. Densification of wood increases the mechanical properties and
density of wood. Chemical pretreatment makes it possible to reduce the variability of the
chemical composition. Chemical pretreatment of wood and subsequent densification is a
promising method for wood processing to obtain implants with density and mechanical
strength suitable for osteosynthesis biomaterials [69].

4.2. Mechanical Properties of Wood as Bone Implant Compared with Other Implant Materials

Natural wood has a density from 450 up to 700 kg/m3, depending on species. The
higher density is observed in hardwood species, whereas softwoods have lower densities.
The modulus of elasticity (MOE) reaches 1550–13,500 MPa and the modulus of rupture
(MOR) reaches 60–100 MPa [132,133]. Mechanical properties can be altered by various
methods such as applying heat and chemical treatment. Applying lower heat, up to 200 ◦C,
can increase the MOE, and rupture can be increased by up to 50% [134]. If wood is heated
over 800 ◦C, it loses up to 80% of its mass and 60% of its volume. The obtained carbonized
wood has poor mechanical properties, with a density around 200–400 kg/m3, although
biocompatibility and osteoconductivity is preserved [71,135,136]. Another technique for
wood processing is densification, which involves partial delignification and compression.
Authors Andze L. et al., in a mechanical study, increased juniper’s density by 100%, reaching
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almost 1200 kg/m3. The MOR and MOE were increased by 85% and 620%, accordingly [69].
Studies of wood’s mechanical properties show that natural wood is not strong enough
to produce durable orthopedic implants for bone fracture fixation. Nevertheless, with
certain processing mechanical properties of wood can be improved to fit requirements for
orthopedic implants. The most common material for orthopedic implants is still titanium
and its alloys. Titanium has a density of 4500 kg/m3, MOR of 45,000 MPa and MOE of
120,000 MPa [137]. Obviously, titanium’s mechanical strength is multiple times higher
than any biological material, including bone—its density is up to 1200 kg/m3 [138–140],
its MOE varies from 10–3000 MPa, and its MOR is 150–180 MPa. [141,142] This significant
disparity in mechanical properties allows stable fixation for fractures, but can also cause
complications such as aseptic loosening [143–148].

Since other materials used in bone repair are dedicated to bone defect substitution,
their mechanical properties are unessential, as they are not supposed to provide mechanical
support to the bone [149]. Among the investigated biomaterials are tricalcium phosphate
bioceramics (density 3070 kg/m3, MOR 1.3 MPa, MOE 49 MPa [150]), hydroxyapatite
bioceramics (density 3050 kg/m3, MOR 18 MPa, MOE 174 MPa [151]) bioactive glass 45S5
(density 2850 kg/m3, MOR 45 MPa, MOE 60 MPa [152]), collagen (density 2700 kg/m3,
MOR 2 MPa, MOE 46 MPa [153]), and silk fibrion (density 1400 kg/m3, MOR 5 MPa, MOE
100 MPa [154]). Mechanical properties of different materials are summarized in Table 2.

Table 2. Summary of mechanical properties for different materials.

Material Density, kg/m3 MOE, MPa MOR, MPa

Human bone [140,141] up to 1200 10–3000 150–180

Natural wood [132] 450–700 1550–13,500 60–100

Carbonized wood [135] 200–400 15–140 11–53

Densified wood [69] 1170 12,500 174

Titanium [137] 4500 120,000 45,000

Calcium phosphate bioceramics [150] 3070 49 1.3

Hydroxyapatite bioceramics [151] 3050 174 18

Bioactive glass 45S5 [152] 2850 60 45

Collagen [153] 2700 46 2

Silk fibrion [154] 1400 100 5

4.3. Summary for Further Investigation

The interest in biomaterials has been constantly growing in the past decades. As envi-
ronmental issues are a growing concern, an alternative to unsustainable and non-renewable
materials is being developed [24]. This direction of development also includes medical
implants. Although metallic implants have been greatly improved in terms of biocompat-
ibility and corrosion resistance, their environmental impact is impossible to avoid [155].
Multiple studies have proven that sustainable biomaterials are not only suitable for the
production of different implants, but their production process also has a significantly lower
ecological footprint compared to any non-sustainable resources [27,29,156]. In the search
for suitable biomaterials to be used in bone repair, wood has been one of the potential
options studied. The earliest studies published in the last century were conducted us-
ing in vivo models. These studies proved the osteoconductive abilities of natural wood
implants. Osteoconductivity is a passive attribute of implants, where they allow bone
tissue ingrowth on the surface or inside pores of an implant [157–159]. This feature of
wood implants has been proven in a few studies by obtaining microscopic pictures of
new bone trabeculas inside wood pores [54,55,68]. Another important feature of bone
implants is osseointegration—direct contact and anchorage between bone and implant,
which is maintained over the long-term [160,161]. This feature was demonstrated with
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juniper prosthesis in rabbits. Animals were able to bear weight with no restrictions up to
3 years, without any implant failures [68]. Studies done in the 21st century are executed
in vitro. Throughout the studies, not every species of wood had proved to be equally suit-
able for bone implants; e.g., lime and willow showed an acute inflammatory reaction [62].
It was concluded that the inflammatory reaction depends on the soluble substances of
wood (extractives). Additionally, bamboo before treatment produced cytotoxicity in an
in vitro study [162]. Other species such as birch, ash, and juniper have presented excellent
biocompatibility [54,55,59,68]. To reduce a possible inflammatory reaction, pre-treatment
of the wood is a crucial step. Not only for the sake of asepsis; additional components in
untreated wood, e.g., fungi, have been found [163]. They alone can produce an inflamma-
tory reaction [164]. Techniques for pre-treatment differ in various articles. Juniper for an
in vivo study has been pre-treated only in boiling water for 10 min [68]. Other authors
have tried ethanol pre-treatment that was not sufficient to avoid an acute inflammatory
reaction [59]. In the following studies, pre-treatment with higher temperatures became
more popular. Aho, Rekola et al. used heat as high as 220 ◦C for birch and ash implants [55].
This range of temperature neutralizes bacteria, fungi, and all organic extracts, such as
essential oils. Thus, pre-treatment at high temperatures reduces the risk of toxic reaction
to the minimum. Other authors considered wood as a scaffold for creating new biomate-
rials. In the oldest studies, charcoal was researched as a possible biomaterial. Although
osteoconductive properties were preserved, poor mechanical properties limited further
applications. Since the first articles on wood-derived ecoceramics were published, this
biomaterial has gained considerable research interest, as ecoceramics combine wood’s
favorable properties such as porosity, mechanical and heat resistance. Aside from bone
implant development, these characteristics raise interest in a wide range of industrial uses,
i.e., filters, catalysts, electric sensors, etc. [165]. Despite the fact that only afew studies were
published on biocompatibility of ecoceramics [166,167], the concept was advanced by com-
bining ecoceramics with other biomaterials, such as HA and bioactive glass. Both concepts
of wood as biomaterial—hybrid biocomposites and pure wood—have been highlighted in
research as a potential biomaterial for repairing damaged bone [18–22,25–33]. It should be
noted that other biomaterials are also available for this purpose, such as calcium phosphate
bioceramics, bioactive glasses [168], and different composite materials combining bioactive
inorganic materials with biodegradable polymers [169,170]. Wood is also a main source
for cellulose, which has a wide application for medical devices and wound dressings as
well. Although only a small number of studies involving cellulose scaffolds have been
devoted to bone surgery, some promising results have been reported for bone tissue prolif-
eration and local drug delivery to improve bone healing [171,172]. Orthopedic implants
have demanding mechanical requirements to sustain long periods of mechanical loading.
For this reason, thus far, metal implants are dominant, and only two groups of authors
have processed wood with a goal of orthopedic implants for fracture fixation and joint
arthroplasty [62,68,173].

5. Conclusions

Wood is a sustainable and renewable source suitable for the production of biomaterials.
The processing of wood is more environmentally friendly, especially compared to titanium
production, which emits carbon monoxide and other toxic by-products. Nowadays, there
is still limited research on the use of wood in bone implants, despite the fact that its
great potential has been demonstrated by available studies. The in vivo studies done
in the 20th century’s last decades show great insight into some species of wood’s great
biocompatibility and osteoconductivity. Based on the provided review, the continued
development of wood implants for further incorporation in surgical practice is suggested.
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bioactive compounds in the biomass of black locust, poplar and willow. Trees 2019, 33, 1235–1263. [CrossRef]

66. Enescu, C.; Durrant, T.; Caudullo, G.; de Rigo, D. Juniperus Communis in Europe: Distribution, Habitat, Usage and Threats; Publication
Office of the European Union: Luxembourg, 2016.

67. Semerdjieva, I.; Zheljazkov, V.D.; Radoukova, T.; Dincheva, I.; Piperkova, N.; Maneva, V.; Astatkie, T.; Kačániová, M. Biological
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