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Abstract: Diffusion tensor imaging (DTI) is an MRI analysis method that could help assess cognitive
impairment (CI) in the ageing population more accurately. In this research, we evaluated fractional
anisotropy (FA) of whole brain (WB) and corpus callosum (CC) in patients with normal cognition
(NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). In total,
41 participants were included in a cross-sectional study and divided into groups based on Montreal
Cognitive Assessment (MoCA) scores (NC group, nine participants, MCI group, sixteen participants,
and SCI group, sixteen participants). All participants underwent an MRI examination that included a
DTI sequence. FA values between the groups were assessed by analysing FA value and age normative
percentile. We did not find statistically significant differences between the groups when analysing
CC FA values. Both approaches showed statistically significant differences in WB FA values between
the MCI-SCI and MCI-NC groups, where the MCI group participants showed the highest mean FA
and highest mean FA normative percentile results in WB.

Keywords: diffusion tensor imaging; Montreal Cognitive Assessment; fractional anisotropy; cognitive
impairment; neuroradiology; cognition; mild cognitive impairment; dementia

1. Introduction

Cognitive impairment is defined as a disruption in cognitive functions, such as mem-
ory, attention, language, problem solving, and executive functioning [1]. If cognitive
impairment reaches a point where it severely impacts a person’s daily functioning and
prevents their active engagement in social interactions, it suggests a potential transition to
dementia. Dementia is a neurodegenerative condition characterised by a significant level of
cognitive impairment that hampers an individual’s ability to actively participate in social
and work life [2]. Cognitively impaired individuals often require increased support and
care from their families, caregivers, and healthcare providers, leading to higher healthcare
costs and reduced productivity in the workforce [3,4].

The current diagnostic methods for cognitive impairment primarily rely on clinical
assessments, such as neuropsychological testing and brain imaging techniques, like mag-
netic resonance imaging. However, these methods have certain limitations and may not
accurately reflect the extent of cognitive impairment [5].

Diffuse tensor imaging (DTI) is a magnetic resonance imaging-based technique that
allows for the exploration of the integrity of white matter microstructure by measuring the
degree and directionality of water diffusion, and the overall magnitude of diffusion could
be measured, as indicated by the Apparent Diffusion Coefficient (ADC) [6]. Fractional
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anisotropy is a metric used in diffusion tensor imaging to assess the microstructural integrity
of white matter fibre bundles in the brain. It measures the degree and directionality of
diffusion within white matter tracts, providing information about the organisation and
integrity of these tracts [7].

This type of examination is important for several reasons. First of all, this technique
provides valuable information about the microstructure of brain tissue and can be used to
evaluate white matter abnormalities [8,9].

The use of DTI has proven to be beneficial in the evaluation of multiple sclerosis
(MS), as it has the capability to offer quantitative parameters, like FA and mean diffu-
sivity (MD) [10]. The method has demonstrated promise in visualising and quantifying
disruptions in connectivity and assessing variations in normal-appearing white matter
in patients with MS [11]. It has also been shown to differentiate between various types
of brain tumours, including glioblastoma and cerebral metastases, by visualising white
matter tracts and providing information on tumour infiltration into surrounding brain
tissue [12–14]. For example, DTI-derived metrics have been used to distinguish glioblas-
toma multiforme from normal brains, and DTI-guided radiotherapy has been suggested
as an advanced approach [15,16]. Furthermore, it has also shown promise in predicting
patterns of glioma recurrence, enabling improved customisation of tumour management
and stratification for randomised controlled trials [17]. The method has also been widely
employed to study the effects of various conditions on brain microstructural abnormalities,
including traumatic brain injury [18], type 2 diabetes with mild cognitive impairment [19],
and myotonic dystrophy type I [20]. Additionally, DTI has been used to study the frontal
lobe white matter in children with autism spectrum disorder (ASD), revealing variances in
neural pathways compared to typically developing children [21]. In a study by Sivaswamy
et al., DTI was utilised to examine specific brain pathways, such as the cerebellar pathways,
and has identified irregularities in children with ASD [22].

One of the key applications of DTI analysis is fibre tracking in the brain. By combining
DTI with functional MRI, researchers can gain insights into the connectivity of different
brain regions [9]. This is particularly important for understanding the neural networks and
pathways involved in various brain functions and processes.

FA alterations also may be region-specific and associated with respective clinical
manifestations. For instance, studies have demonstrated that changes in FA in specific
white matter tracts are associated with cognitive impairment in memory clinic patients
with vascular brain injury [23]. Furthermore, FA alterations in the corpus callosum have
been linked to chronic visual neglect [24], autism spectrum disorder [25], stroke, multiple
sclerosis, dyslexia, and schizophrenia [9]. They can also be sensitive markers of brain
microstructural alterations, especially after mild traumatic brain injury [26]. By examining
the diffusion properties of water molecules in affected brain regions, DTI can provide
insights into the structural changes associated with these diseases. This information
can be used for diagnostic purposes, monitoring disease progression, and evaluating
treatment efficacy [8]. In addition to its clinical applications, DTI analysis is also becoming
part of routine clinical protocols. Its ability to provide detailed information about tissue
microstructure and connectivity makes it a valuable tool for clinicians in various medical
fields [9]. DTI analysis can aid in the diagnosis and management of brain diseases and
disorders, contributing to improved patient care and outcomes [9].

DTI has been used to diagnose intracranial pyogenic infections, masses, trauma, and
vasogenic versus cytotoxic edema [27]. It has also been applied in the investigation of
cerebral ischemia, brain maturation, traumatic brain injury, epilepsy, multiple sclerosis,
Alzheimer’s disease, brain tumours, and metabolic disorders [27]. By examining WB FA,
researchers could gain a comprehensive understanding of the structural changes associated
with these conditions.

It can be assumed that WB FA analysis allows for a comprehensive assessment of
white matter integrity throughout the brain. By examining FA values across the entire
brain, researchers can identify global patterns of white matter alterations. This approach
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has been used to investigate the effects of housing quality and behaviour on brain health
and anxiety [28]. What is interesting is that whole brain FA analysis has been employed to
study the time course of Wallerian degeneration after ischemic stroke [29].

However, there are certain limitations and challenges associated with DTI analysis
that make it less suitable for certain applications. Limitations include different acquisition
parameters (single-shell vs. multi-shell, number of directions), different preprocessing and
post-processing techniques, and software differences [30]. Other limitations include DTI’s
inability to resolve multiple fibre orientations within a single voxel. The tensor model used
in DTI assumes a single dominant fibre orientation, which means that it cannot accurately
represent complex fibre configurations such as fibre crossing, bending, or twisting [9].
All these limitations can lead to inaccurate interpretation of the data and may result in
misleading conclusions.

In a study by Porcu et al., the fractional anisotropy of healthy participants was anal-
ysed, revealing that as age increases, FA decreases. There were no significant differences
between FA and gender. Higher FA values were associated with increased activity in
specific brain regions, including those within the default mode network. This suggests that
higher FA may be linked to enhanced neural activity during resting states. The study also
found a stronger correlation between certain brain regions, particularly those that are part
of the limbic system. This suggests that FA may play a role in influencing the connectivity
and networking of brain regions, particularly within the limbic system [31].

Furthermore, DTI analysis may not be suitable for all types of tissues or diseases.
While DTI has been successfully applied in studying brain white matter and demonstrating
abnormalities in diseases, such as stroke, multiple sclerosis, dyslexia, and schizophrenia [9],
its applicability to other tissues or diseases may be limited. For example, a study evalu-
ating acute anterior ischemic optic neuropathy found that DTI parameters did not show
significant differences between affected and unaffected eyes [32]. This suggests that DTI
may not be sensitive enough to detect subtle changes in certain tissues or diseases.

To sum up the introduction, recent advancements and ongoing studies in DTI research
continue to expand our understanding of its applications in cognitive impairment. Con-
tinuous developments in acquisition parameters, processing techniques, and analytical
models are addressing some of the limitations previously mentioned, enhancing DTI’s
utility in neuroimaging research. For instance, Tax et al. summarised preprocessing steps,
limitations, and future steps, focusing on what is new in the post-Human Connectome
Project era. They highlighted the emergence of databases and simulations specifically tar-
geted at evaluating preprocessing steps and efforts that perform automated quality control
and quantitatively and qualitatively compared preprocessing steps. They also discussed
practical considerations and provided insights into what is next in DTI analysis [30].

Our study’s objective was to compare WB FA and CC FA results between the three
groups (normal cognition (NC), mild cognitive impairment (MCI), and severe cognitive
impairment (SCI)), which were divided based on MoCA test results.

2. Materials and Methods

In total, 41 participants were included in the cross-sectional study, who were then
divided into 3 groups according to Montreal Cognitive Assessment (MoCA) scores [33,34]:

1. Normal cognition (NC) group (participants with MoCA scores ≥ 26);
2. Mild cognitive impairment (MCI) group (participants with MoCA ≥ 20 and ≤25);
3. Severe cognitive impairment (SCI) group (participants with MoCA ≤ 19.

There were 9 participants in the NC group (M age 65, SD 11.456, youngest 44 years,
oldest 77 years, mean MoCA score 28.222, SD 1.093, lowest score 27.000, highest score
30.000), 16 patients in the MCI group (mean age 69.563, SD 7.330, youngest 57 years, oldest
80 years, mean MoCA score 23.313, SD 1.662, lowest score 20.000, highest score 25.000),
and 16 patients in the SCI group (mean age 75.938, SD 10.491, youngest 62, oldest 96, mean
MoCA score 10.750, SD 4.946, lowest score 4.000, highest score 18.000). Research participant
demographic data, gender, and MoCA scores between the groups can be seen in Table 1.
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Table 1. Research population and division according to MoCA score.

Gender (F:M) Age MoCA

NC MCI SCI NC MCI SCI NC MCI SCI

N 8:1 10:6 10:6 9 16 16 9 16 16
M 65.0 69.6 75.9 28.2 23.3 10.8

Std.
Deviation 11.5 7.3 10.5 1.1 1.7 5.0

Minimum 44.0 57.0 62.0 27.0 20.0 4.0
Maximum 77.0 80.0 96.0 30.0 25.0 18.0

X2 2.3 60.6 82.0 ***
*** = p < 0.001.

A chi-square test on gender was conducted, and it determined that there were no
statistically significant differences between the groups (X2 = 2.259, p = 0.323). Similarly, no
group differences were found in age (X2 = 60.575, p = 0.052) using a Kruskall–Wallis test;
nevertheless, statistically significant differences between the three groups were identified
in MoCA scores (X2 = 82.000, p < 0.001).

2.1. Selection of Participants

The participants included in our study were referred to a neurologist based on their
subjective complaints of cognitive impairment or suspected cognitive impairment based
on primary physician assessment.

Participants were excluded from this study if they had clinically significant neuro-
logical or psychiatric disorders (such as a history of tumours, severe strokes, vascular
malformations, major depression, Parkinson’s disease, schizophrenic disorders, bipolar
disorders, maniacal states, etc.), as well as a history of drug or alcohol abuse.

The neurologist who participated in our research is a board-certified professional with
expertise in diagnosing and managing cognitive impairment.

No other clinically significant abnormalities were detected on the MRI scans in patients
enrolled in this study. None of the participants had signs of cerebral amyloid angiopathy,
more than 4 microbleeds, intra-/extra-axial tumours, vascular malformations, or signs of
other neurodegenerative diseases. From the available clinical records, none of the participants
had uncontrolled hypertension, diabetes mellitus, or clinically verified depression. All partici-
pants were university graduates with at least 16 years of education. The cognitive testing and
MRI data were obtained in the time period from January 2020 to December 2022.

In our research work, ASL and fMRI sequences were not performed.

2.2. MRI Acquisition Protocol and Fractional Anisotropy Calculation

All patients underwent an MRI scanning protocol based on the Alzheimer’s Disease
Neuroradiology Initiative, which included:

• Three-dimensional T1 SPGR (technical parameters—flip angle 11, TE min full, TI 400,
FOV 25.6, layer thickness 1 mm);

• Three-dimensional FLAIR (technical parameters—TE 119, TR 4800, TI 1473, echo 182,
FOV 25.6, layer thickness 1.2 mm);

• High-resolution hippocampal structure assessment sequence (technical parameters—flip
angle 122, TE 50, Echo 1, TR 8020, FOV 17.5, layer thickness 2, coronal direction
perpendicular to the hippocampus);

• DTI (technical parameters—32 directions, b = 0 and 1000 s/mm2, diffusion direction—
tensor, FOV 23.2, layer thickness 2 mm, TE 100);

• SWI (technical parameters—flip angle 15, TE 22.5, TR 34.7, slice thickness 3 mm);
• DWI (technical parameters—b = 0, 1000, and synthetic 2000 s/mm2, flip angle 90,

TE 76.0, TR 9852.0, slice thickness 3 mm).
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The DTI evaluation was performed using the Icometrix DTI software (icobrain tbi
report) package, which evaluates fractional anisotropy in the whole brain, corpus callosum,
and other specific brain tracts. The examinations were performed on a single 3T MRI
machine, images were preprocessed, and DTI data were processed to acquire FA values for
the whole brain and corpus callosum (see Figure 1).
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Figure 1. DTI examination with colour-coded fibre pathways in axial, sagittal, and coronal planes.

Performed steps for processing included eddy current correction with affine registra-
tion, the use of Tractseg [35] for creating a binary tract mask, and then computing the mean
FA from iteratively reweighted linear least squares in the tract mask [36]. Further, FA maps
and distributions are calculated and extracted from the region of interest (whole brain and
corpus callosum) [37].

After all steps have been completed, the resulting FA data are standardised, har-
monised, and compared to age- and gender-normative data obtained from a healthy
population database that consists of 918 MR studies from 788 unique patients aged from
18 to 86 years, acquired on different scanners and equally distributed over different age
groups [37–39].

In our study, the analysis of WB FA was specifically concentrated on white matter,
using TractSeg for accurate segmentation. This focused approach excludes grey matter and
cerebrospinal fluid, allowing us to precisely assess white matter integrity. Corpus callosum
FA was extracted based on the TractSeg segmentation protocol with further FA calculation
as described above.

In our research, focusing on both the whole brain and the corpus callosum, we specifi-
cally analysed two key variables: the fractional anisotropy (FA) value and the normative
percentile, which take into account age and gender-based norms.

2.3. Statistical Analysis

JASP 0.17.3 was used for statistical analysis (Eric-Jan Wagenmakers, Amsterdam,
The Netherlands) [40]. Statistical analysis included descriptive statistics, a chi-square test, a
Kruskal–Wallis test, and Dunn’s post hoc analysis of study results.

Descriptive statistics were used to estimate general variables and differences between
groups. A chi square test was used to determine the association between categorical
variables. A Kruskall–Wallis test was used to evaluate statistically significant differences
between the 3 groups, and if there were statistically significant differences, Dunn’s post
hoc test was utilized with additional Bonferroni and Holm corrections.

3. Results
3.1. Whole Brain Fractional Anisotropy

Using a Kruskal–Wallis test, we identified statistically significant differences in whole
brain fractional anisotropy (WB FA) (H (2) = 9.311, p = 0.010) (see Figure 2).
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Figure 2. WB FA value comparisons between (from left to right) SCI, MCI, and NC with data
distribution in each group.

By performing Dunn’s post hoc test, statistically significant differences were found
between the SCI-MCI group (p = 0.007, after Bonferoni and Holm correction statistical
significance was maintained) and the MCI-NC group (p = 0.016, after Bonferoni and Holm
correction statistical significance was maintained) (see Table 2).

Table 2. Dunn’s post hoc comparison of the MoCA score and WB FA between the SCI-MCI, SCI-NC,
and MCI-NC groups.

Comparison z Wj Wj′ p pBonf pHolm

SCI-MCI −2.720 16.658 28.063 0.007 ** 0.02 * 0.02 *
SCI-NC 0.099 16.656 16.167 0.921 1.000 0.921
MCI-NC 2.407 28.063 16.167 0.016 * 0.048 * 0.032 *

* p < 0.05, ** p < 0.01.

By performing a Kruskal–Wallis test for WB FA, normative percentile differences were
found to be statistically significant between groups (H (2) = 11.614, p = 0.003) (see Figure 3).

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. WB FA normative percentile comparisons between (from left to right) SCI, MCI, and NC 
with data distribution in each group. 

By performing Dunn’s post hoc test, statistically significant differences were found 
between the SCI-MCI group (p = 0.018, but after Bonferoni correction there were no statis-
tically significant differences) and the MCI-NC group (p = 0.001, after Bonferoni and Holm 
correction statistical significance was maintained) (see Table 3). 

Table 3. Dunn’s post hoc comparison of the MoCA score and WB FA normative percentiles between 
the SCI-MCI, SCI-NC, and MCI-NC groups. 

Comparison z Wj Wj' p pBonf pHolm 
SCI-MCI −2.361 18.438 28.438 0.018 * 0.055 0.036 * 
SCI-NC 1.223 18.438 12.333 0.221 0.664 0.221 
MCI-NC 3.227 28.438 12.333 0.001 ** 0.004 ** 0.004 ** 

* p < 0.05, ** p < 0.01. 

3.2. Corpus Callosum Fractional Anisotropy 
The Kruskal–Wallis test did not indicate statistically significant differences between 

the study groups (H (2) = 0.565, p = 0.754) (see Figure 4). 

 
Figure 4. CC FA comparisons between (from left to right) SCI, MCI, and NC with data distribution 
in each group. 

Figure 3. WB FA normative percentile comparisons between (from left to right) SCI, MCI, and NC
with data distribution in each group.

By performing Dunn’s post hoc test, statistically significant differences were found
between the SCI-MCI group (p = 0.018, but after Bonferoni correction there were no statisti-
cally significant differences) and the MCI-NC group (p = 0.001, after Bonferoni and Holm
correction statistical significance was maintained) (see Table 3).
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Table 3. Dunn’s post hoc comparison of the MoCA score and WB FA normative percentiles between
the SCI-MCI, SCI-NC, and MCI-NC groups.

Comparison z Wj Wj′ p pBonf pHolm

SCI-MCI −2.361 18.438 28.438 0.018 * 0.055 0.036 *
SCI-NC 1.223 18.438 12.333 0.221 0.664 0.221
MCI-NC 3.227 28.438 12.333 0.001 ** 0.004 ** 0.004 **

* p < 0.05, ** p < 0.01.

3.2. Corpus Callosum Fractional Anisotropy

The Kruskal–Wallis test did not indicate statistically significant differences between
the study groups (H (2) = 0.565, p = 0.754) (see Figure 4).
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Figure 4. CC FA comparisons between (from left to right) SCI, MCI, and NC with data distribution in
each group.

The highest mean corpus callosum (CC) FA was found in the MCI patient group (the
mean value in the group was 0.628), and the lowest was in the SCI group (the mean value
in the group was 0.617).

Similarly, as in CC FA values, for the CC FA normative percentile there were no
statistically significant differences between our study groups when the Kruskal–Wallis test
was performed (H (2) = 0.376, p = 0.829) (see Figure 5).
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Figure 5. CC FA normative percentile comparisons between (from left to right) SCI, MCI, and NC
with data distribution in each group.
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The highest mean CC FA normative percentiles were in the MCI group (the mean
value in the group was 61.962), and the lowest mean percentiles were in the SCI group (the
mean value in the group was 55.262).

4. Discussion

While the analysis of diffusion tensor imaging fractional anisotropy (DTI FA) data
in patients with cognitive impairment provides some insights into the microstructural
alterations within white matter tracts of the brain, in our study, when analysing whole
brain FA and CC FA, we did not observe substantial differences in FA values among NC-
SCI. We observed that FA values are higher in the MCI group compared to the NC and SCI
groups. While this outcome may initially appear inconclusive, it offers valuable insights
into the complex relationship between cognitive impairment and microstructural white
matter alterations.

Studies have shown that reduced FA values are associated with conditions, such
as traumatic brain injury [41], multiple sclerosis [42], and Parkinson’s disease [43], and
conversely, increased FA values have been observed in individuals born preterm [44] and in
adolescents with severe perinatal brain injury [44]. These findings suggest that changes in
FA can reflect both pathological and compensatory processes in the brain. In the context of
our findings, lower whole brain FA results in dementia, and severe cognitive impairment is
a common finding, emphasising the degenerative changes that often accompany cognitive
decline [45–47].

Contrary to the previous statement, in our study, whole brain FA values were highest
in the MCI group. There could be several explanations.

In whole brain FA analyses, the intrinsic variability of individual white matter tracts
is disregarded. This methodological limitation can result in compromised sensitivity and
specificity when interpreting alterations in global FA metrics. Therefore, such an approach
may not be optimally suited for capturing nuanced neuroanatomical changes that affect
cognition.

Whole brain FA value changes during a lifespan is a non-linear value, where several
white matter tracts in the brain obtain peak FA at a different age, i.e., the highest FA of
cingulum is observed around the age of 43, and the highest FA of inferior fronto-occipital
fasciculus is observed around the age of of 25 [48,49]. Barnea-Goraly et al. also observed
age-related changes in white matter FA values in four brain pathways, including the corpus
callosum and white matter tracts within the basal ganglia [50]. However, there is also
evidence suggesting a linear decrease in white matter connectivity with age. Research by
Webb et al. found that white matter connectivity in the optic radiation exhibited a linear
decrease across the lifespan, indicating age-related degradation of white matter and its
impact on visual executive functions [51]. In addition to age-related changes, vascular
burdens and genetic factors may also contribute to white matter microstructural decline. A
study by Williams et al. found that higher cholesterol levels were associated with a poorer
white matter microstructure in cognitively normal older adults, suggesting that vascular
diseases can impact white matter integrity [52].

Several papers indicate widespread variations of FA changes where in longitudi-
nal studies some participants observe an increase in FA and some observe a decrease
in FA in the same regions. In a study by Lebel and Beaulieu, the majority of partici-
pants exhibited increases in FA in association fibres. Notably, these specific fibres, in-
cluding the superior and inferior fronto-occipital, inferior longitudinal, and cingulum,
continued to show FA increases between scans, even among individuals aged 19–25 and
22–32 years. The study measured 10 brain tract FA—the genu, body, and splenium of
the corpus callosum, corticospinal tracts, superior and inferior longitudinal fasciculus,
superior and inferior fronto-occipital fasciculus, uncinate fasciculus, and cingulum—and it
stated that a considerable proportion of the participants, ranging from 20% to 30%, experi-
enced a decrease in FA. These changes in FA are typically interpreted as unfavourable or
detrimental in the context of ageing in the elderly population [53].
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Moreover, Pareek et al. and Rathee et al. did not observe age-related changes in whole
brain FA when analysing patients in three age groups: young adults (20–40 years), middle
age (41–60 years), and old age (61–85) [54,55]. However, there is evidence that age-related
changes in grey matter thickness and FA are driven, in part, by a common biological
mechanism related to changes in cerebral myelination. This suggests that age-related
changes in whole brain FA may be influenced by changes in myelination in the cerebral
white matter [56]. Furthermore, Wright et al. compared age-related decline in whole brain
FA values in patients with schizophrenia and normal controls and found that the decline was
approximately twice as fast in patients compared to the controls. This indicates that factors,
such as neurological disorders, can also impact age-related changes in whole brain FA.

Despite not finding any statistically significant age differences between the study
groups, it is worth noting that the participants in the NC group were younger. This finding
further undermines the reliability of using WB FA as a biomarker for early cognitive
impairment.

CC plays a crucial role in facilitating interhemispheric communication and coordi-
nation. CC FA results provide insights into the organisation of the white matter fibres
connecting the left and right cerebral hemispheres. In our study, we compared the whole
corpus callosum FA value, but other research suggests that different segments of the CC,
such as the genu, body, and splenium, can be separately analysed to assess FA alterations
in specific regions. For example, previous research has shown reduced FA in the genu
of the CC in individuals with Alzheimer’s disease and decreased FA in the splenium in
individuals born preterm [44].

These findings suggest that different regions of the corpus callosum may be selectively
affected in different neurological conditions. Therefore, further research could be focused
on specific corpus callosum regions.

It is also crucial to acknowledge the limitations of our study. One possible explanation
for the lack of significant differences in FA among the study groups is the heterogeneity
of cognitive impairment within each group. Cognitive impairment is a complex and
multifactorial condition, influenced by various etiological factors, including age, genetics,
and comorbidities [57]. It is plausible that the variability within each group masked any
potential differences in FA that may exist between them. Future studies should consider
controlling for these confounding factors to obtain a more accurate assessment of the
relationship between FA and cognitive impairment severity [58]. It is worth noting that
our sample size was relatively small, which may have limited the statistical power to
detect significant differences. A larger sample size would provide more robust results and
increase the generalisability of our findings. Additionally, the inclusion of longitudinal
data would allow for the examination of FA changes over time and provide insights into
the dynamic nature of cognitive impairment. Potential confounding variables that were not
detected on initial screening are also significant factors that influenced the study results [59].
Additionally, highly educated individuals with actual cognitive decline may perform well
in these tasks and thus mask their decline [60].

It is important to mention that DTI is limited in its ability to resolve multiple fibre
orientations within a single voxel. This can be problematic in regions where multiple
fibre bundles intersect or cross each other, leading to partial volume effects and difficulties
in accurately characterising complex fibre architecture [59]. Noise in DTI data can have
a significant impact on the accuracy and reproducibility of the derived measurements.
Studies have shown that noise can affect diffusion anisotropy indices, mean diffusivity, and
principal eigenvector measurements [61]. In particular, the estimation process used in DTI
has been found to be sensitive to noise [62]. The effect of noise on DTI data is complex and
can lead to a systematic distortion of the tensor, which depends on the signal-to-noise ratio
(SNR) [63]. DTI assumes Gaussian diffusion, which may not accurately represent diffusion
behaviour in regions with restricted diffusion, such as areas with crossing fibres or complex
tissue microstructures. Generalised diffusion tensor imaging (GDTI) methods have been
proposed to address this limitation and capture non-Gaussian diffusion behaviour [64].
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These limitations may have contributed to our inability to detect significant FA dif-
ferences. Therefore, further research with larger sample sizes, longitudinal designs, and a
more comprehensive assessment of clinical variables is necessary to evaluate DTI FA use in
cognitive impairment diagnostics.

Also, we used Icometrix icobrain tbi report, which uses specific preprocessing algo-
rithms that may or may not be used in other research papers analysing FA. Factors such as
fibre crossing, partial volume effects, and tissue heterogeneity can complicate the interpre-
tation of diffusion metrics and their relationship to underlying tissue properties [65].

The lack of significant differences in FA between study groups suggests that FA may
not be a reliable standalone biomarker for assessing the severity of cognitive impairment.
This raises questions about the utility of FA in clinical settings. It is possible that FA alone
does not capture the complexity and heterogeneity of cognitive impairment and that a
multimodal approach incorporating other neuroimaging measures, such as cortical thick-
ness or functional connectivity, may provide a more comprehensive assessment. Analysing
specific tracts can offer a more detailed understanding of the structural changes associated
with varying degrees of cognitive impairment. Future studies should consider integrating
multiple imaging modalities to gain a more holistic understanding of the neural correlates
of cognitive impairment.

Our objective was to compare WB FA and CC FA results between the study groups that
were divided based on MoCA test results. We observed statistically significant differences
between the MCI-SCI and NC-MCI groups.

5. Conclusions

In our study, we observed statistically significant differences in WB FA between the
SCI-MCI and NC-MCI groups, where the MCI group participants had the highest mean FA
and highest mean FA normative percentile results in WB. We did not observe statistically
significant differences between the groups by analysing CC FA and CC FA normative
percentiles.

Therefore, future research could prioritise tract-specific analyses over whole brain
evaluation to achieve a more specific and potentially clinically relevant understanding of
FA variations in cognitive impairment.
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