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Abstract: This study presents an innovative approach to fruit measurement using 3D imaging,
focusing on Japanese quince (Chaenomeles japonica) cultivated in Latvia. The research consisted of
two phases: manual measurements of fruit parameters (length and width) using a calliper and
3D imaging using an algorithm based on k-nearest neighbors (k-NN), the ingeniously designed
“Imaginary Square” method, and object projection analysis. Our results revealed discrepancies
between manual measurements and 3D imaging data, highlighting challenges in the precision and
accuracy of 3D imaging techniques. The study identified two primary constraints: variability in
fruit positioning on the scanning platform and difficulties in distinguishing individual fruits in close
proximity. These limitations underscore the need for improved algorithmic capabilities to handle
diverse spatial orientations and proximities. Our findings emphasize the importance of refining 3D
scanning techniques for better reliability and accuracy in agricultural applications. Enhancements in
image processing, depth perception algorithms, and machine learning models are crucial for effective
implementation in diverse agricultural scenarios. This research not only contributes to the scientific
understanding of 3D imaging in horticulture but also underscores its potential and limitations in
advancing sustainable and productive farming practices.

Keywords: Chaenomeles japonica; germplasm; genotypes; fruit size; characterization; volumetric data;
point cloud

1. Introduction
1.1. Japanese Quinces

Globally, the ornamental cultivation of the Chaenomeles species is widespread, with
over 300 varieties being cultivated for aesthetic purposes in various regions, including
Europe, Canada, and the United States. In contrast, the use of Chaenomeles japonica as an
agricultural fruit crop is predominantly recognized in the Baltic nations and, to a lesser
extent, in Scandinavia, Germany, and Poland. The fruits of this species, referred to here as
CHAE, are noted for their significant biochemical composition, which encompasses a range
of organic acids; sugars; phenolic compounds; vitamins, such as vitamin C; and amino
acids, as well as essential minerals and trace elements. These components contribute to the
fruit’s pronounced antioxidant properties [1–4].

In Latvia, systematic breeding of CHAE for fruit production began in the 1950s, with
expansive plantations being established in the subsequent two decades. By the 1990s, the
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plantation area in Latvia had grown to about 300 hectares [5]. Initially, these commer-
cial plantations were derived from seed-propagated plants, which exhibited considerable
genetic variability. This heterogeneity resulted in less uniform and economically advan-
tageous yields, compared to plantations established with selected vegetative cultivars.
Despite large-scale fruit production, the lack of diversified processed products led to a de-
cline in the industry [6,7]. However, in 2002, the Latvian Institute of Horticulture (LatHort)
innovated and patented a method for producing candied CHAE fruit [8]. This new product
has been adopted by over 20 companies, spurring the resurgence of CHAE commercial cul-
tivation through exports. Notably, CHAE candied fruits have gained international market
traction, with exports from companies like “Rāmkalni” SIA (Latvia, Krustin, i) extending to
China and Australia, constituting 3–5% of their total production, which is about 10–15 tons
monthly. Additionally, baby purees containing organically grown CHAE are now being
exported to various countries, including Kuwait, Saudi Arabia, India, and Korea. These
developments suggest a considerable, yet-to-be fully tapped global market potential for
Japanese quince products. Presently, Japanese quince is a substantial commercial crop in
Latvia, with cultivation areas expanding fourfold over the past six years to 706 hectares in
2022, indicative of its increasing popularity annually in Latvia and other Baltic Sea nations
like Poland.

A new breeding initiative was launched in the 1990s at LatHort with the goal of
developing CHAE cultivars suited to the Latvian climate, utilizing Ch. japonica due to its
superior winter hardiness in the colder northern European climates [5]. Between 1998 and
2002, LatHort collaborated with Swedish and Lithuanian researchers to assess a diverse
range of CHAE germplasms as part of the EU Project “Japanese quince (Chaenomeles japon-
ica)—a New European Fruit Crop for Produce of Juice, Flavour and Fibre” (EUCHA)” [9].
CHAE plants have demonstrated considerable adaptability under various growing con-
ditions, though the inheritance of desirable characteristics is not always guaranteed. The
preferred attributes for prospective cultivars include robust winter hardiness of both the
plants and their flower buds, absence of thorns, high and consistent yields, disease resis-
tance, and superior fruit quality with rich biochemical content, coupled with early ripening
and upright growth with minimal branching [10]. The fruit morphology of Japanese quince
is notably varied [11], with some genotypes producing large, ribbed fruits and others
displaying fruit shape polymorphisms, including both ribbed and smooth oval or round
fruits on a single plant. This morphological diversity can fluctuate annually or may be due
to genetic instability. Distinct differences in productivity, fruit quality, size, and biochemi-
cal composition have also been observed among different genotypes [12]. Following an
assessment at LatHort, three cultivars—‘Rasa’, ‘Darius’, and ‘Rondo’—were selected and
officially registered in Latvia. These varieties are distinguished by their high yield, fruit
uniformity, and early to mid-September ripening times, with individual fruits typically
weighing between 40–60 g [13].

In order to improve the quality of quince fruits and other parameters, the breeding
work at LatHort continues. Plant phenotyping (description and evaluation) has always
been a major field of research in plant breeding. To distinguish candidates for cultivars
in fruit breeding, it is necessary to describe and evaluate the characteristics of several
thousand seedlings. Traditional phenotyping methods (measuring the length and width
of the fruit with a calliper and weighing) are used to characterize the size and shape of
the fruit, which are very labor- and time-consuming [14]. Since several parameters are
evaluated in points, the results can be relatively subjective, and results may differ among
different evaluators.

1.2. Three-Dimensional Technologies in Plant Phenotyping

Over the past thirty years, advancements in capturing three-dimensional (3D) surface
information from plants have revolutionized our understanding of plant architecture and
growth [15–17]. The utilization of 3D measurement technologies provides invaluable in-
sights into the structural development of plants, encompassing entire canopies, individual
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plants, and specific plant organs. This non-destructive method allows for ongoing moni-
toring over time, making it an integral part of plant phenotyping [18]. A key aspect of 3D
measurement is its ability to distinguish actual growth from mere plant movement at both
the plant and organ levels [19].

Plant phenotyping is an essential process that bridges the gap between genomic
research and the practical agricultural traits of plants [20]. In this context, 3D measuring
devices play a crucial role, offering precise measurements of plant geometry and growth.
These devices employ a variety of techniques, including laser scanning, structure from
motion (SfM), terrestrial laser scanning, structured light approaches, time-of-flight sensors,
and light-field cameras. Each technology caters to different scales, from individual plants
in laboratories to thousands of plants in experimental fields or open fields. The chosen
technique depends on specific requirements, such as robustness, accuracy, resolution, and
speed, essential for generating functional structural plant models, differentiating growth
from movement, visualizing diurnal patterns, and assessing the impact of environmental
stress on plant development [21–23].

All these technologies yield point clouds, where each point is defined by X, Y, and
Z coordinates in a 3D space, and may include additional data like color or intensity,
representing reflected light. Unlike 2.5D methods that measure from a single perspective,
true 3D models incorporate point clouds from multiple viewpoints, offering less occlusion,
higher spatial resolution, and greater accuracy. The resolution in these scans is defined as
the minimal distance between points, while accuracy refers to the proximity between the
real and measured points.

Active techniques include triangulation-based systems like laser triangulation (LT)
and structured light (SL), as well as time-of-flight measurements, such as terrestrial laser
scanning (TLS) and time-of-flight (ToF) cameras. Passive methods encompass light-field
cameras (LF) and structure-from-motion (SfM) approaches.

The use of 3D technologies in plant phenotyping offers several advantages. These
technologies enable the acquisition of multi-source phenotypic data throughout the entire
crop-growing period, allowing for the extraction of various plant parameters, such as height,
width, leaf length, leaf area, and inclination angle [24]. Additionally, 3D model-based meth-
ods permit the simultaneous extraction of multiple morphologic traits, including canopy
height, plant volume, and leaf area index (LAI), while mitigating plant occlusion [25]. Low-
cost 3D imaging devices have been shown to be highly reliable for plant phenotyping, with
the potential to be implemented in automated application procedures, thus saving acquisi-
tion costs [18]. Furthermore, 3D reconstruction technology has been widely used to analyze
crop phenotypes, offering a valuable tool for the development of digital agriculture [26].

However, there are also challenges and limitations associated with the use of 3D
technologies in plant phenotyping. For instance, there are issues related to low accuracy,
expensive equipment, and complicated operation in crop 3D reconstruction research, with
recognition efficiency being determined, to a large extent, by the shading between crops [27].
The complexity of the analysis of 3D representations has been identified as a bottleneck
hindering the wider deployment of 3D plant phenotyping [23]. Additionally, while 3D
mesh analysis shows potential for accurately estimating specific morphological features
and monitoring them over time, there is a need for further development and testing
in the context of high-throughput plant phenomics [23]. Moreover, the complexity of
the plant geometry being scanned significantly influences the computational power and
resources needed for the scanning process, particularly when scanning intricate objects like
leaves [28]. In this context, the employment of multispectral scanning, which integrates
various sensors, such as thermal, LIDAR, NIR, RGB, and THz, has demonstrated superior
efficiency, compared to monospectral scanning techniques [29].

In conclusion, the use of 3D technologies in plant phenotyping offers numerous advan-
tages, including the acquisition of multi-source phenotypic data, simultaneous extraction
of multiple morphologic traits, and cost-effectiveness. However, challenges such as low
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accuracy, complexity of analysis, and limitations in mesh analysis need to be addressed to
fully leverage the potential of 3D technologies in plant phenotyping.

In this research, we employ structured light (SL) technology, which is widely used
for imaging 3D data. SL employs specific patterns, such as grids or horizontal bars, in
a defined temporal sequence. Each pattern change is captured by the camera. By using
a predetermined camera–projector setup, the deformation of these patterns is measured
to link 2D points with their corresponding 3D information [30,31]. SL setups, typically
large and time-consuming in image acquisition, necessitate the movement of either the
object or the measurement system for comprehensive coverage. Commonly implemented
in industrial applications for reverse engineering or quality control, SL provides high
resolution and accuracy within a substantial measurement volume [32].

2. Materials and Methods

When conducting this study, a diverse array of software programs, programming
languages, and libraries were employed to address various computational and analyti-
cal needs:

• Jamovi (ver. 2.4) software: This was utilized for statistical computations [33].
• R language: In addition to Jamovi, it was also employed for statistical analyses [34].
• Python programming language: This was used for the development and implementa-

tion of algorithms.
• Libraries: Open3D (ver. 0.17) was pivotal in processing point cloud data, offering

advanced functionalities for 3D modeling and object detection. NumPy (ver. 1.26) was
used for data manipulation and computational tasks. PyQt5 (ver. 5.15.10) enabled the
creation of intuitive graphical user interfaces.

2.1. Acquisition of Fruit Measurements Using the Manual Method

The study meticulously focused on Japanese quince fruits (Chaenomeles japonica) culti-
vated and harvested for analytical evaluation at LatHort, an orchard situated in Dobele
within the southern region of Latvia. These fruits were strategically planted in the spring
of 2019, with its precise geographical coordinates being WGS84 56◦37′335′′ N, 23◦33′233′′ E,
ensuring a consistent and controlled environmental setting for growth.

In 2022, a comprehensive evaluation was conducted on eleven distinct genotypes of
Chaenomeles japonica at LatHort. This assessment primarily revolved around two phenotypi-
cal parameters of the fruits: their length and width, both measured in millimeters. Notably,
the width of each fruit was meticulously measured at its thickest point to ensure accuracy
and consistency. This measurement process was conducted using a calliper.

2.2. Three-Dimensional Data Acquisition and Postprocess

In this study, Japanese quince samples were systematically arranged on a flat surface
in a fixed position to ensure consistency in data capture. A key aspect for achieving
optimal results was maintaining a fixed distance between the camera and the objects. The
experiment involved placing 30 fruit samples on a plate arranged in a 4 × 8 grid, with
each point cloud encompassing 30 samples of a particular species. In total, 22 point clouds
were captured using the Zivid One+ Medium camera (Zivid, Oslo, Norway) positioned at
a fixed location and operated via the Zivid Studio program [35]. Notably, every alternate
point cloud represented a repeated capture of a specific fruit variety, leading to the analysis
of 11 unique point clouds.

The Zivid One+ Medium camera is adept at capturing both RGB and depth information
and is particularly suitable for small-to-medium objects within a range of 0.6 m to 2.0 m.
The precision of this camera ranges from 0.06 mm to 1.0 mm, depending on the distance.
This camera employs structured light 3D technology, an effective method for accurate 3D
imaging. All captured point clouds were saved locally and, without any preliminary data
processing, were directly loaded into the Python environment using the Open3D library
for subsequent analysis.
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This methodology harnesses the potential of three-dimensional point cloud data to
facilitate precise measurements. The core of this system is anchored in the utilization
of three sophisticated algorithms: the k-nearest neighbors algorithm (k-NN), the “Imag-
inary Square” algorithm, and a unique method involving object projection analysis on a
reference plate.

1. The k-NN algorithm, renowned for its efficacy in pattern recognition [36], is specifi-
cally employed for color differentiation within the dataset. A fundamental prerequisite
for the application of the k-NN algorithm is the initial training phase, wherein the
algorithm is exposed to multiple color samples representative of the target object.
This process is crucial for enabling the algorithm to discern and subsequently ex-
clude background and irrelevant data points based on the defined color parameters
of the object, in this case, Japanese quinces. For objects exhibiting a spectrum of
colors, each distinctive hue is incorporated into the classification scheme to ensure
comprehensive identification.

2. In scenarios involving multiple fruits within a single point cloud, the need for dis-
crete object detection becomes paramount. The “Imaginary Square” algorithm is
ingeniously designed to address this challenge. Initiated at the point of maximum
‘y’ value within the point cloud, this algorithm progressively expands a conceptual
square, encompassing an increasing number of data points. The expansion of the
square continues as long as a sequential increase in data points is observed. The
termination of square growth occurs upon reaching a plateau in point increment,
suggesting the potential identification of an object. However, if objects are in close
proximity, the algorithm may erroneously perceive them as a singular entity. To
circumvent this, defining an upper limit on the object size becomes essential, beyond
which further expansion of the square is deemed unnecessary.

3. The third algorithm pivots on the concept of projecting the object onto a base plane.
This is achieved by a reverse application of the k-NN algorithm, where the focus
shifts from the object to the background. This reversal aids in the identification of
outlier points delineating the base projection of the object. The inherent limitation
of 3D imaging in capturing the area obscured by the fruit results in voids within the
point cloud, which, in this context, represent the base projection of the fruit. The
analysis commences in the region defined by the “Imaginary Square” algorithm, with
each projection being scrutinized individually. This involves identifying the point
with the maximum ‘y’ value on the projection perimeter and generating an ‘analysis
point’ from which four vectors extend to the nearest perimeter points. This procedure,
potentially iterated with slight adjustments to the analysis point, furnishes a detailed
understanding of the projection’s perimeter, thereby inferring the spatial dimensions
of the object situated above.

Such an integrated approach, combining color differentiation, spatial segregation, and
projection analysis, presents a robust framework for accurately determining the dimensions
of fruits, an advancement that holds significant promise in the field of precision agriculture.
Scheme 1 illustrates the comprehensive pipeline for the phenotyping process.
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2.3. Experiment Conditions and Specifications

Ambient light under perfect conditions for the 3D Zivid One+ camera (Table 1) was 0
lux. The brightness of the camera was high enough to ensure the capturing of a quality scene
in any ambient light. Point clouds were not calibrated to physical units. We had to convert
point cloud units to physical units (cm). Our task was to perform radiometric and geometric
calibrations on the imagery to convert digital number (DN) values to reflectance values.
This involved correcting for sensor-specific characteristics and atmospheric conditions.
Plant size was computed based on the number of pixels after image classification.

Table 1. Zivid One+ camera specifications.

Projector brightness 0.25x to 1.8x; 1x = 400 lumens

The field of view angle 0 (Directly above)

Resolution 1920 × 1200 (2.3 Mpixel), Native 3D Color

Point cloud output 3D (XYZ) + Color (RGB) + SNR

Exposure time (minimum per pattern
projection) 6.5 ms

Focus distance 1000 mm

Optimal working distance 700 to 1500 mm

Camera distance from objects 1000 mm

Field of view 702 × 432

Spatial resolution 0.37 mm and 3.71 × 10−4 mm per distance (z)

Capture time 200 ms

Point precision in Euclidian distance 110 µm

Local Planarity Precision in Euclidian distance 190 µm

3. Results
3.1. Characterization of Japanese Quince Fruit Parameters Using Manual Measurement Techniques

The evaluation of Japanese quince fruit parameters was conducted with the specific
objective of acquiring comparative data to align with parameters derived from 3D imaging
techniques. This exercise involved the meticulous manual measurement of key phenotyp-
ical parameters, which are closely related to the methodology employed in 3D analysis.
These parameters were measured using traditional manual methods, specifically utilizing a
calliper for precision. The detailed results of these manual measurements are systematically
presented in Table 2. This comparative approach is instrumental in validating the accuracy
and reliability of 3D imaging techniques by juxtaposing their results with those obtained
through conventional manual measurement methods.

Furthermore, a diverse range of genetic phenotypes of fruits, encompassing varieties
such as Ada, Alfa, Darius, Rasa, Rondo, and the SR1 series (SR1-1 through SR1-6), is
vividly illustrated in Figures 1 and 2 and extensively described in Table 3. Each of these
phenotypes represents a unique genetic profile, offering a rich tapestry of variation within
the species. To ensure consistency and optimal visual representation, all fruits were carefully
photographed at the peak of their ripeness. This timing was meticulously chosen to capture
the fruits in their fully matured state, thus providing a clear and accurate visual comparison
of the different phenotypes.
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Table 2. Measurements of Japanese quince fruits using the manual method.

Genotype Fruit Length (mm) Fruit Width (mm)

N

Ada 30 30

Alfa 30 30

Darius 30 30

Rasa 30 30

Rondo 30 30

SR1-1 30 30

SR1-2 30 30

SR1-3 30 30

SR1-4 30 30

SR1-5 30 30

SR1-6 30 30

Median

Ada 49 47

Alfa 40 44

Darius 37 42

Rasa 44 52

Rondo 46 47

SR1-1 45 47

SR1-2 40 47

SR1-3 43 50

SR1-4 37 40

SR1-5 43 45

SR1-6 46 47

Standard deviation

Ada 4 3

Alfa 3 2

Darius 4 4

Rasa 4 4

Rondo 6 4

SR1-1 6 3

SR1-2 3 3

SR1-3 4 4

SR1-4 4 3

SR1-5 4 3

SR1-6 4 3
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Table 3. Characterization of Japanese quince fruits.

Genotype Average Fruit
Weight (g)

Maximum Fruit
Weight (g) Characteristics of the Fruit

SR1-1 53 130 Round and slightly flattened with a smooth surface, exhibiting mild
ribbing and a notably deep inflorescence.

SR1-2 45 78 Bright yellow and homogeneous in appearance, these are
barrel-shaped with significant puncture and rust characteristics.

SR1-3 64 122 Dark yellow, round, and slightly flattened; characterized by prominent
red dots and brown dotted rust; they also display a ribbed texture.

SR1-4 34 71
Predominantly bright yellow, round, and barrel-shaped, with some
assuming a pear-shaped (pyriform) form. They have a very smooth
surface and are mostly free from puncture.

SR1-5 42 110
Yellow, round, and barrel-shaped with a smooth texture; slight ribbing
at the tip, aesthetically pleasing, and with a few red dots; near the
inflorescence, there is slight brown rust.

SR1-6 56 105
Smooth, attractive, and yellow, varying from round or oval, to
bottle-shaped. Some exhibit pronounced red dots and slight russeting
in the form of small brown dots or stripes.

Rasa 48 75 Yellow and rounded, exhibiting mild ribbing. In some years, they
assume a pear-shaped (pyriform) appearance.

Darius 34 45 Oblong and yellow, characterized by a smooth and homogeneous
surface.

Rondo 52 67 Yellow and oblong, featuring a deep flower bed and generally
homogeneous in appearance.

Ada 55 78 Dark yellow with a pink wreath, oblong, and maintaining a
homogeneous texture.

Alfa 53 67 Yellow with pronounced rust spots, rounded, slightly ribbed, and
featuring a deep flower bed.

3.2. Characterization of Japanese Quince Fruits Utilizing a 3D Imaging-Based Methodology

This section presents data acquired through 3D camera imaging, subsequently pro-
cessed using the algorithms detailed in the Methodology section. The scans encompass
the same species and quantity of fruits as those measured manually, ensuring a direct
comparison. Statistical analyses of the 3D scanned and postprocessed data have been
conducted to provide a comprehensive understanding of the fruits’ characteristics (Table 4).

Table 4. Characterization of Japanese quince fruits utilizing a 3D imaging-based methodology.

Genotype Fruit Length (mm) Fruit Width (mm)

N

Ada 19 19

Alfa 19 19

Darius 15 15

Rasa 23 23

Rondo 20 20

SR1-1 16 16

SR1-2 29 29

SR1-3 25 25

SR1-4 29 29

SR1-5 17 17

SR1-6 29 29
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Table 4. Cont.

Genotype Fruit Length (mm) Fruit Width (mm)

Median

Ada 48 46

Alfa 42 46

Darius 38 41

Rasa 45 50

Rondo 50 46

SR1-1 42 48

SR1-2 39 39

SR1-3 45 48

SR1-4 39 42

SR1-5 50 48

SR1-6 46 46

Standard deviation

Ada 3 4

Alfa 3 4

Darius 2 4

Rasa 5 5

Rondo 10 6

SR1-1 2 6

SR1-2 3 7

SR1-3 3 4

SR1-4 4 4

SR1-5 3 6

SR1-6 5 3

In its turn, Table 5 presents a comparative analysis, showcasing the numerical differ-
ences between the ground truth—represented by manual measurements—and the data
obtained through the 3D-based methodology. This table serves as a critical tool for eval-
uating the accuracy and precision of the 3D imaging technique in relation to traditional
manual measurement approaches.

Table 5. Comparative analysis of fruit dimensions: manual calliper-derived ground truth measure-
ments versus 3D data estimations for length and width across various genotypes.

Genotype Fruit Length (mm) Fruit Width (mm)

Median

Ada −2 3

Alfa −3 0

Darius −2 2

Rasa 0 −1

Rondo −7 2

SR1-1 3 −2

SR1-2 2 6

SR1-3 −3 2

SR1-4 −2 −3

SR1-5 −5 −5

SR1-6 0 1



Horticulturae 2023, 9, 1347 12 of 16

Table 5. Cont.

Genotype Fruit Length (mm) Fruit Width (mm)

Standard deviation

Ada 4 3

Alfa 5 4

Darius 3 6

Rasa 5 4

Rondo 13 6

SR1-1 5 5

SR1-2 4 6

SR1-3 4 3

SR1-4 3 4

SR1-5 4 5

SR1-6 5 3

Figure 3 presents a concise visual comparison between manual measurements, which
serve as the ground truth, and the data acquired from 3D imaging techniques. This juxtapo-
sition effectively highlights the variances and correlations between these two measurement
methodologies.
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4. Discussion

The analysis revealed that the data obtained from the 3D scanner, which was later uti-
lized in calculations, unfortunately lacked the desired level of precision and accuracy when
compared to the results from manual methodologies. It was evident that the effectiveness of
3D data calculations varied significantly among different species, with some experiencing
a notably low rate of successful scans. This inconsistency in successful scanning adversely
affected the algorithm’s ability to accurately calculate fruit length and width. Furthermore,
the limited number of successful samples from the 3D scans had a substantial impact on
the standard deviation, indicating variability in the data. A primary concern highlighted in
this study is the low rate of successfully processed 3D data, particularly in terms of the final
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calculated parameters of the fruits. This issue underscores the need for further refinement
of 3D scanning techniques to enhance their reliability and accuracy for such applications.

This study represents a pioneering effort in exploring the phenotyping of Japanese
quince using 3D technologies, an area where modern research is notably sparse. The
algorithms developed herein demonstrate promising potential; however, they require
further refinement to match the efficiency and accuracy of traditional manual methods.
The exploration should not be confined to the current methodologies alone. Incorporating
additional novel 3D scanning techniques, along with the integration of artificial intelligence,
could provide a more comprehensive insight into the most effective approaches for this
specific species. This broader approach is critical for advancing our understanding and
capabilities in precision agriculture, particularly for Japanese quince phenotyping [23].
However, the understanding of limitations within the study is paramount for a compre-
hensive understanding of the tool’s applicability and scope. Two primary constraints have
been identified:

Inherent variability in fruit positioning: One of the salient limitations arises from the
inability of the tool to uniformly calculate measurements for all fruits. This challenge is
predominantly due to the variable positioning of fruits on the scanning platform. The
irregular morphologies of different fruits often result in their placement at diverse angles
on the scanning board, thereby complicating the uniformity of measurement. This angular
variance can significantly affect 3D point cloud data interpretation, leading to potential
discrepancies in dimensional assessment. The irregular orientation of the fruits introduces
a degree of spatial heterogeneity that the current algorithmic framework struggles to
normalize, thereby restricting the tool’s efficacy in uniformly measuring fruits with complex
or asymmetrical shapes.

Proximity-induced measurement challenges: A second limitation pertains to the diffi-
culty in accurately distinguishing and measuring individual fruits when they are in close
proximity to one another. In instances where fruits are positioned adjacent to each other,
the tool’s algorithms may erroneously interpret them as a singular entity. This conflation
is primarily a consequence of the overlapping spatial data points in the 3D point cloud,
which the system fails to segregate into distinct fruit entities. This limitation is particu-
larly pronounced in densely packed fruit arrangements where the physical boundaries
between adjacent fruits are minimal, leading to significant challenges in individual fruit
identification and measurement.

It is crucial to enhance the algorithms to more accurately discern and measure fruits
in varying spatial orientations and close proximities. This enhancement would involve
refining the tool’s capabilities to differentiate individual fruits, even when they are clustered
closely together or obscured by foliage and other environmental factors. Such refinements
could include advanced image processing techniques, improved depth perception algo-
rithms, and more sophisticated machine learning models that are trained on a diverse set
of scenarios representing different fruit orientations and clustering patterns.

Moreover, the challenges of the use of 3D technologies in horticulture extend beyond
just the algorithmic enhancements. These encompass a range of issues, such as the scalabil-
ity of these technologies for large-scale agricultural settings, their integration with existing
agricultural management systems, the cost-effectiveness of their deployment, and their
robustness under different environmental conditions. Each of these aspects presents unique
challenges that require dedicated research and development efforts [37]. Addressing these
challenges is indeed critical to expanding the applicability and reliability of 3D scanning
tools in a variety of fruit measurement scenarios. This will not only facilitate more accurate
phenotyping and breeding decisions but also enhance yield estimation, quality control,
and disease detection in agricultural practices. It will allow for more precise and efficient
agricultural operations, ultimately contributing to sustainable and productive farming
practices, as non-destructive measurement techniques are pivotal in fruit phenotyping,
providing superior advantages over traditional destructive methods. Currently, our re-
search necessitates harvesting the fruit for analysis, but we are actively working towards
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enhancing our methodologies to transition to non-destructive approaches allowing for
non-invasive, repeated quality assessments of individual fruits, thereby reducing waste
and enhancing efficiency [38]. In contrast to the time-consuming nature of destructive
methods, non-destructive techniques facilitate rapid, accurate analysis of fruit internal
quality, essential for maintaining consistent product standards [39]. The advent of advanced
electronics and computing has spurred the development of diverse non-destructive tools
like NIR, NMR, X-ray, computed tomography, and ultrasound, proving invaluable in com-
mercial harvest, handling, distribution, and breeding programs for their cost-effectiveness
and efficiency [40]. Additionally, the use of non-destructive spectroscopy for pigment
assessment in supply chains exemplifies the broad applicability of these techniques in
ensuring fruit quality across various stages. We are currently planning to adopt these
innovative, non-destructive methods into our research, a move that could revolutionize
fruit phenotyping by enabling more precise, efficient, and sustainable quality assessments
and thereby significantly benefit postharvest processes and breeding programs.
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