
Citation: Soffritti, I.; Gravelsina, S.;

D’Accolti, M.; Bini, F.; Mazziga, E.;

Vilmane, A.; Rasa-Dzelzkaleja, S.;

Nora-Krukle, Z.; Krumina, A.;

Murovska, M.; et al. Circulating

miRNAs Expression in Myalgic

Encephalomyelitis/Chronic Fatigue

Syndrome. Int. J. Mol. Sci. 2023, 24,

10582. https://doi.org/10.3390/

ijms241310582

Academic Editor: Vincent

C. Lombardi

Received: 30 May 2023

Revised: 15 June 2023

Accepted: 21 June 2023

Published: 24 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Circulating miRNAs Expression in Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome
Irene Soffritti 1,† , Sabine Gravelsina 2,*,† , Maria D’Accolti 1 , Francesca Bini 1, Eleonora Mazziga 1,
Anda Vilmane 2 , Santa Rasa-Dzelzkaleja 2 , Zaiga Nora-Krukle 2 , Angelika Krumina 3, Modra Murovska 2

and Elisabetta Caselli 1,*

1 Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara,
44121 Ferrara, Italy; irene.soffritti@unife.it (I.S.); maria.daccolti@unife.it (M.D.); francesca.bini@unife.it (F.B.);
eleonora.mazziga@unife.it (E.M.)

2 Institute of Microbiology and Virology, Rı̄ga Stradin, š University, LV-1067 Riga, Latvia;
anda.vilmane@rsu.lv (A.V.); santa.rasa-dzelzkaleja@rsu.lv (S.R.-D.); zaiga.nora@rsu.lv (Z.N.-K.);
modra.murovska@rsu.lv (M.M.)

3 Faculty of Medicine, Department of Infectology, Rı̄ga Stradin, š University, LV-1006 Riga, Latvia;
angelika.krumina@rsu.lv

* Correspondence: sabine.gravelsina@rsu.lv (S.G.); csb@unife.it (E.C.)
† These authors contributed equally to this work.

Abstract: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multifactorial
disease that causes increasing morbidity worldwide, and many individuals with ME/CFS symptoms
remain undiagnosed due to the lack of diagnostic biomarkers. Its etiology is still unknown, but
increasing evidence supports a role of herpesviruses (including HHV-6A and HHV-6B) as potential
triggers. Interestingly, the infection by these viruses has been reported to impact the expression of
microRNAs (miRNAs), short non-coding RNA sequences which have been suggested to be epigenetic
factors modulating ME/CFS pathogenic mechanisms. Notably, the presence of circulating miRNAs
in plasma has raised the possibility to use them as valuable biomarkers for distinguishing ME/CFS
patients from healthy controls. Thus, this study aimed at determining the role of eight miRNAs,
which were selected for their previous association with ME/CFS, as potential circulating biomarkers
of the disease. Their presence was quantitatively evaluated in plasma from 40 ME/CFS patients and
20 healthy controls by specific Taqman assays, and the results showed that six out of the eight of
the selected miRNAs were differently expressed in patients compared to controls; more specifically,
five miRNAs were significantly upregulated (miR-127-3p, miR-142-5p, miR-143-3p, miR-150-5p,
and miR-448), and one was downmodulated (miR-140-5p). MiRNA levels directly correlated with
disease severity, whereas no significant correlations were observed with the plasma levels of seven
pro-inflammatory cytokines or with the presence/load of HHV-6A/6B genome, as judged by specific
PCR amplification. The results may open the way for further validation of miRNAs as new potential
biomarkers in ME/CFS and increase the knowledge of the complex pathways involved in the
ME/CFS development.

Keywords: myalgic encephalomyelitis; chronic fatigue syndrome; microRNA; HHV-6A; HHV-6B;
biomarkers

1. Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe chronic
disease that is characterized by unexplained debilitating fatigue, post-exertional malaise,
localized or diffuse muscle pain, and sleep disturbances. The prevalence of ME/CFS
in Europe ranges from 0.1% to 2.2% [1], although the estimate is affected by the poor
knowledge of the disease, its challenging recognition, and the existence of different case
definitions, based on different diagnostic criteria (among the commonly used ones, Centers
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for Disease Control & Prevention (CDC, 1994) [2], Canadian Consensus Criteria [3], London
Criteria [4], International Consensus Criteria [5], or Institute of Medicine criteria) [6].

ME/CFS etiology is still unclarified, but it is recognized as a heterogeneous and
multifactorial disease, and several factors have been hypothesized as triggers, including
genetic predisposition, physical or emotional stress conditions, disruption of immunological
processes, infection, and autoimmunity [7,8].

Several pieces of evidence support the role of human herpesviruses (HHVs), including
HHV-6A, HHV-6B, HHV-7, and Epstein–Barr virus (EBV), as potential causative agents.
To note, 49–93% of patients who developed ME/CFS disease reported an initial “flu-like”
symptomatology, suggestive of undergoing viral infection or reactivation [9–11]. Consis-
tently, HHV-6A/6B reactivation has been associated with the occurrence of ME/CFS clinical
symptoms and higher levels of proinflammatory cytokines, including tumor necrosis fac-
tor (TNF)-α, interleukin (IL)-6, and IL-12 [12,13]. Saliva samples from ME/CFS patients
were recently reported to harbor high loads of HHV-6 and HHV-7, which correlated with
symptoms’ severity, thus supporting the hypothesis that HHV reactivation may have a role
in ME/CFS pathogenesis and related immunological dysregulation [14]. Reactivation of
HHV-6 was observed in the brain and neuronal tissues of ME/CFS patients, supporting
the role of this virus in disease development [15].

However, despite increasing evidence implicating HHVs as potential etiological agents
of ME/CFS, the underlying mechanisms are not clarified, and a few mechanistic hypothe-
ses have been recently proposed [16,17]. HHV-6 reactivation was reported to induce mito-
chondrial fragmentation, decrease of ATP production, and an increase in reactive oxygen
species, which are considered the key pathway in ME/CFS pathophysiology [16,18].
Other recent data evidenced a possible role of HHV-6A in altering germinal center activ-
ity and extrafollicular antibody responses by viral protein deoxyuridine triphosphate
nucleotidohydrolase [17].

The lack of quantitative markers for ME/CFS diagnosis has stimulated several studies
in the past 30 years, originally suggesting the role of immune response or dysfunction
and trying to identify specific cytokines as biomarkers for the disease development [19,20].
Some data were, however, recognized as artifacts, such as those regarding the transforming
growth factor β (TGFβ) marker, which, in fact, was related to the procedure of sample
preparation rather than to genuine variation in serum concentration [20]. Other reports
suggest that ME/CFS could be an autoimmune disease [8,21], and, indeed, increased plas-
matic levels of antibodies against beta2-adrenergic receptors and muscarinic acetylcholine
receptor 4 were found in ME/CFS patients compared to healthy controls [22].

More recently, growing interest has been given to microRNAs (miRNAs) as poten-
tial biomarkers in ME/CFS; however, so far, no miRNA has been validated for clinical
diagnosis [23–25]. MiRNAs are short sequences (18–23 nucleotides) of non-coding RNA
with essential roles in regulating gene expression at the post-transcriptional level, which is
suggested to have a role in many pathological pathways. Specifically, circulating miR-124,
miR-448, and miR-551b have been found to be differentially expressed in patients with
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren’s syndrome (SS),
and ulcerative colitis, with respect to healthy controls, and thus have been suggested as
biomarkers for autoimmune diseases [26]. High-throughput miRNome sequencing of
plasma from ME/CFS subjects evidenced differential expression of miR-127-3p, miR-142-
5p, and miR-143-3p compared to non-CFS controls [24]. In addition, the upregulation of
miR-140-5p and miR-150-5p expression has been reported both in plasma and peripheral
blood mononuclear cells (PBMCs) of ME/CFS subjects compared to healthy controls or
associated with ME/CFS response to post-exertional malaise induction [23,25,27], and
an influence of the nutritional status and gender of patients has been observed [27]. The
main findings regarding the mentioned miRNAs and their association and role in ME/CFS
disease are summarized in Table 1.
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Table 1. Association of selected miRNAs with ME/CFS and potential role in the disease.

Target miRNAs Association and Potential Role in ME/CFS References

miR-124-3p

• Significantly decreased in RA, SLE, SS, and UC subjects,
compared to healthy controls; suggested as biomarker for
systemic autoimmune diseases: AUC 0.9 (95% CI
0.833–0.967), 76.5% specificity and 91.3% sensitivity.

• It regulates autoimmune inflammation.

• Jin F. et al., 2018 [26]
• Ponomarev E.D. et al., 2011 [28]

miR-127-3p

• Upregulated in plasma of ME/CFS subjects compared to
non-fatigued controls.

• Increased in PEM.
• Identified as a potential biomarker to distinguish ME/CFS

disease from fibromyalgia.
• It suppresses IL-10 response, inhibits cell proliferation,

and induces cell apoptosis.

• Brenu E.W et al., 2014 [24]
• Nepotchatykh, E. et al., 2020 [25]
• Nepotchatykh, E. et al., 2023 [29]
• Saito Y. et al., 2006 [30]
• Wei G. et al., 2023 [31]

miR-140-5p

• Increased in plasma of ME/CFS subjects.
• Identified as a potential biomarker to distinguish ME/CFS

from fibromyalgia.
• Upregulated in PBMCs of ME/CFS patients.
• It suppresses IL-10 response and modulates T-cell

differentiation and proliferation of immune cells.

• Nepotchatykh, E. et al., 2020 [25]
• Nepotchatykh, E. et al., 2023 [29]
• Almenar-Pérez E. et al., 2020 [23]
• Ghafouri-Fard S. et al., 2021 [32]

miR-142-5p

• Upregulated in plasma of ME/CFS subjects compared to
non-fatigued controls.

• It modulates differentiation/proliferation of immune cells
and interaction with TGF-β1 pathway.

• Brenu E.W. et al., 2014 [24]
• Wang Z. et al., 2020 [33]

miR-143-3p

• Upregulated in plasma of ME/CFS subjects compared to
non-fatigued controls.

• It modulates differentiation/proliferation of immune cells
and interaction with TGF-β1 pathway.

• Brenu E.W. et al., 2014 [24]
• Cheng W. et al., 2016 [34]

miR-150-5p

• Higher PEM scores and increased symptom severity of
ME/CFS patients.

• Upregulated in PBMCs of ME/CFS patients in response
to exercise.

• It modulates differentiation/proliferation of immune cells.

• Nepotchatykh, E. et al., 2020 [25]
• Nepotchatykh, E. et al., 2023 [29]
• Cheema A.K. et al., 2020 [27]
• Ménoret A. et al., 2023 [35]

miR-448

• Significantly increased in RA, SLE, SS, UC, compared to
healthy controls. Suggested as biomarkers for systemic
autoimmune diseases: AUC 0.91 (95% CI 0.85–0.97), 82.4%
specificity and 91.3% sensitivity.

• Mainly studied in cancer-related pathways.

• Jin F. et al., 2018 [26]
• Liao Z.B. et al., 2019 [36]

miR-551b-3p

• Significantly increased in RA, SLE, SS, and UC subjects
compared to healthy controls; suggested as biomarkers for
systemic autoimmune diseases: AUC 0.850 (95% CI
0.769–0.932), 73.5% specificity, and 88.4% sensitivity.

• It regulates inflammatory response.

• Jin F. et al., 2018 [26]
• Zhang Y. et al., 2018 [37]

RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; UC, ulcerative colitis;
AUC, area under the ROC curve; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; PEM, post-
exertional malaise; PBMCs, peripheral blood mononuclear cells.

Interestingly, the infection by HHV-6 has been reported to affect the expression of
miRNAs in different tissues and cellular types, particularly of those miRNAs also found to
be deregulated in patients with autoimmune diseases [38–40].

Based on these observations, the aim of the present study was to determine the
potential role of autoimmunity-associated miRNAs as biomarkers of ME/CFS. To this
purpose, circulating miR-124-3p, miR-127-3p, miR-140-5p, miR-142-5p, miR-143-3p, miR-
150-5p, miR-448, and miR-551b-3p were analyzed in plasma from 40 ME/CFS patients and
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20 healthy controls (CTRs). Correlations were searched between miRNAs’ expression and
disease severity, plasma pro-inflammatory cytokines, and HHV-6 infection/reactivation.

2. Results
2.1. Epidemiological and Clinical Features of ME/CFS and CTR Groups

A total of 60 subjects were recruited at the Rı̄ga Stradin, š University outpatient clinic
(Riga, Latvia), including 40 patients with clinical diagnosis of ME/CFS and 20 healthy
subjects without medical history and symptoms of ME/CFS who were included as controls.
Based on semi-structured interview questions created by Minnock et al. [41], ME/CFS
patients were subdivided into three subgroups, according to the degree of disease severity
(1, severe; 2, moderate; and 3, mild). Epidemiological characteristics (age and gender
distribution) and ME/CFS severity of recruited patients were presented in Table 2. ME/CFS
group included 9 men (30–69 years old) and 31 women (24–76 years old), with a mean
age of 49.3 years. Overall, 5 patients out of 40 (12.5%) presented the most severe disease
(grade 1), 22/40 (55%) were classified as severity grade 2 (moderate ME/CFS), and
13/40 (32.5%) presented the mildest degree of severity (grade 3). The control group
included 4 men (19–38 years old) and 16 women (18–61 years old), with a mean age of
33.4 years. No statistically significant differences were observed in gender distribution
between the ME/CFS and control groups (p = 1.00), whereas a statistically significant
difference was observed for mean age (p < 0.0001), likely due to the low number or healthy
subjects recruited.

Table 2. Epidemiological features of ME/CFS patients and healthy controls.

Group N
Age

Mean ± SE 1 Gender
ME/CFS Severity 2

1 2 3

ME/CFS 40 49.30 ± 2.234 F: 31 (77.5%)
M: 9 (22.5%) 5 (12.5%) 22 (55%) 13

(32.5%)

Controls 20 33.40 ± 2.634 F: 16 (80%)
M: 4 (40%) - - -

p value 0.0001 1.00 (n.s)
1 Standard error. 2 ME/CFS symptoms severity based on the semi-structured interview questions created by
Minnock et al. (1, severe; 2, moderate; and 3, mild). n.s., not significant.

2.2. Quantification of Pro-Inflammatory Cytokines in Plasma Samples

In order to correlate miRNA levels with the eventual inflammatory status of ME/CFS
patients, the levels of seven of the most relevant cytokines involved in autoimmune diseases
(IFN-γ, IL-17A, IL-2, IL-21, IL-23, IL-6, and TNF-α) were quantified in plasma samples
from 39 patients and 20 controls, using the MILLIPLEX MAP Human High Sensitivity T
Cell Panel—Immunology Multiplex Assay on Luminex 200 System. The results, which
are summarized in Table 3, showed that five out of seven tested cytokines (IL-17A, IL-2,
IL-21, IL-6, and TNF-α) were decreased in the ME/CFS group compared to the controls. By
subdividing the ME/CFS group based on the severity of symptoms (1, severe; 2, moderate;
and 3, mild), statistically significant differences were observed between the CTR group and
ME/CFS-2 and ME/CFS-3 subgroups for IL-17A (p < 0.0001 and p = 0.0043, respectively),
IL-2 (p < 0.0001 and p = 0.0004), IL-21 (p < 0.0001 and p = 0.0005), and IL-23 (p = 0.0013 and
p = 0.0156). IL-6 levels were markedly reduced in ME/CFS-1 and -2 subgroups, compared
to the controls (p = 0.0061 and p = 0.0308, respectively). Last, TNF-α resulted in being
significantly decreased in ME/CFS grade 2 patients (p = 0.0038), compared to the CTR
group. Interestingly, patients with the most severe disease (ME/CFS—grade 1) exhibited
higher levels of all tested cytokines compared to subjects with moderate and mild disease,
although the difference was not statistically significant. Although data regarding cytokine
levels in ME/CFS disease are conflicting, a significant upward linear trend which correlated
with ME/CFS severity has already been observed; however, in this case, cytokine levels in
patients were found to be higher than in controls [19].
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Table 3. Plasma cytokine quantification 1.

Cytokine

Group (Subjects n◦)

Controls
(20)

ME/CFS
(39) p-Value 2

ME/CFS
Grade 1

(5)
p-Value 2

ME/CFS
Grade 2

(22)
p-Value 2

ME/CFS
Grade 3

(13)
p-Value 2

IFN-γ 649.90 ± 61.33 507.7 ± 49.98 0.1560 675.8 ± 92.42 0.2890 429.2 ± 77.06 0.1634 572.3 ± 79.80 0.5089
IL-17A 103.80 ± 12.40 18.80 ± 5.54 0.0003 20.47 ± 20.43 0.1568 16.66 ± 5.55 <0.0001 19.48 ± 11.76 0.0043
IL-2 30.40 ± 3.99 4.52 ± 1.42 0.0001 7.26 ± 7.17 0.1989 4.28 ± 1.10 <0.0001 4.40 ± 2.63 0.0004
IL-21 43.97 ± 5.94 9.07 ± 2.13 0.0001 10.46 ± 9.20 0.1065 8.68 ± 2.18 <0.0001 9.64 ± 3.99 0.0005
IL-23 1.602 ± 235.00 407.5 ± 114.5 0.1065 527.5 ± 620.3 0.6728 403.2 ± 100.3 0.0013 377.4 ± 194.3 0.0156
IL-6 16.34 ± 8.14 0.90 ± 2.13 0.0270 0.95 ± 0.23 0.0061 0.90 ± 2.96 0.0308 0.74 ± 4.31 0.0588
TNF-α 45.16 ± 4.06 12.35 ± 3.42 0.0052 13.44 ± 11.27 0.6397 12.35 ±4.04 0.0038 11.61 ± 6.89 0.0587

1 Results are expressed as median cytokine concentration (pg/mL) ± standard error. 2 p-value obtained by
comparing all ME/CFS patients or ME/CFS subgroups (1, severe; 2, moderate; and 3, mild) with the group
of controls.

2.3. HHV-6A/B Presence and Load

In order to assess the presence and amount of HHV-6A/6B in the blood of ME/CFS
subjects compared to controls, PBMCs were isolated from whole blood of patients and
controls, and HHV-6A/B viral presence was analyzed by specific quantitative real-time
PCR (RT-PCR), targeting the HHV-6 pol-gene. The results, reported in Figure 1, showed that
a total of 9/40 patients (22.5%) resulted in being positive for the presence of HHV-6A/6B,
with a mean viral load of 44,871.00 copies/106 cells (range 5.71–403,454.00 copies/106 cells).
Among HHV-6-positive ME/CFS patients, two patients had severe symptoms (ME/CFS
Subgroup 1; 2/5, 40%), six subjects showed moderate ME/CFS symptoms (Subgroup 2;
6/22, 27.3%), and one patient showed mild signs (Subgroup 3; 1/13, 33.3%), evidencing
higher viral prevalence in the subgroup of patients with more severe symptoms; however,
the differences among subgroups were not statistically significant (p = 0.22).
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Figure 1. HHV-6A/B presence and load in enrolled subjects. (a) HHV-6A/B-positive subjects in
control (CTR) and ME/CFS groups; results are expressed as percentage of positive individuals on
the total enrolled subjects. (b) HHV-6A/B load in CTR and ME/CFS groups; results are expressed
as mean viral genome copy number per 106 PBMCs ± S.E. (standard error).

In the control group, only 2/20 subjects (10%) resulted in being positive for viral
presence, with a mean viral load corresponding to 211.94 copies/106 cells (range
174.80–249.08 copies/106 cells). The differences detected between control and ME/CFS
subjects, however, were not statistically significant, likely due to the low number of
subjects included in the analysis and to the high variability of virus load in positive
subjects.

2.4. miRNA Plasma Levels in ME/CFS Patients
The presence and amount of eight miRNAs, selected based on the literature data,

were investigated in the plasma samples derived from ME/CFS patients and healthy
controls by specific Taqman qPCR assays. The results showed that six miRNAs were
differentially expressed in ME/CFS samples compared to the controls (Figure 2a).
Among them, in particular, miR-142, miR-150, and miR-448 were increased in ME/CFS
plasma specimens compared to the controls (p = 0.02, p = 0.03, and p < 0.0001
respectively), while miR-140 resulted in being significantly downmodulated in the
ME/CFS group, as compared to the controls (p = 0.007).

Figure 1. HHV-6A/B presence and load in enrolled subjects. (a) HHV-6A/B-positive subjects in
control (CTR) and ME/CFS groups; results are expressed as percentage of positive individuals on the
total enrolled subjects. (b) HHV-6A/B load in CTR and ME/CFS groups; results are expressed as
mean viral genome copy number per 106 PBMCs ± S.E. (standard error).

In the control group, only 2/20 subjects (10%) resulted in being positive for viral
presence, with a mean viral load corresponding to 211.94 copies/106 cells (range
174.80–249.08 copies/106 cells). The differences detected between control and ME/CFS
subjects, however, were not statistically significant, likely due to the low number of subjects
included in the analysis and to the high variability of virus load in positive subjects.

2.4. miRNA Plasma Levels in ME/CFS Patients

The presence and amount of eight miRNAs, selected based on the literature data, were
investigated in the plasma samples derived from ME/CFS patients and healthy controls
by specific Taqman qPCR assays. The results showed that six miRNAs were differentially
expressed in ME/CFS samples compared to the controls (Figure 2a). Among them, in
particular, miR-142, miR-150, and miR-448 were increased in ME/CFS plasma specimens
compared to the controls (p = 0.02, p = 0.03, and p < 0.0001 respectively), while miR-140
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resulted in being significantly downmodulated in the ME/CFS group, as compared to the
controls (p = 0.007).

By stratifying ME/CFS patients according to symptoms severity (1, severe; 2, mod-
erate; and 3, mild), very different levels of circulating miRNAs were detected within the
three subgroups (Figure 2b). Specifically, miR-124 and miR-142 appeared to be increased
in the subgroups with a higher level of disease severity, although differences between the
patient groups and control group were not statistically significant. Similarly, the down-
modulation of miR-140 correlated with the severity of symptoms, although the decrease
resulted in being significant only for the ME/CFS Subgroup 2 compared to the controls
(p = 0.006). Overall, increased levels of plasmatic miRNAs in the ME/CFS group were more
evident by stratifying patients according to severity, showing a positive correlation between
abundance of miRNAs and more severe symptoms. This was evident for miR-448, which
was overexpressed in all symptoms’ subgroups, as compared to healthy controls, with
increasing values correlating with ME/CFS severity, (p < 0.0001, p = 0.001, and p = 0.0015,
for Subgroups 1, 2, and 3, respectively). Statistically significant increases were also detected
for miR-127 (p = 0.0019), miR-143 (p = 0.5), and mir-150 (p = 0.0007) in ME/CFS Subgroup 1
when compared to the controls.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 20

Figure 2. Cont.
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Figure 2. Plasma miRNA levels in control (CTR) and ME/CFS subjects. (a) Comparison between
whole CTR and ME/CFS groups. (b) Comparison between CTR group and ME/CFS subgroups,
subdivided for symptoms severity (1, severe; 2, moderate; and 3, mild). All results are expressed
as fold change (log10 values) detected in ME/CFS subjects compared to the controls. Results are
depicted as boxplots with Whiskers; the median line, interquartile range, and min-max values for

Figure 2. Plasma miRNA levels in control (CTR) and ME/CFS subjects. (a) Comparison between
whole CTR and ME/CFS groups. (b) Comparison between CTR group and ME/CFS subgroups,
subdivided for symptoms severity (1, severe; 2, moderate; and 3, mild). All results are expressed
as fold change (log10 values) detected in ME/CFS subjects compared to the controls. Results are
depicted as boxplots with Whiskers; the median line, interquartile range, and min-max values for
each group are shown. Statistical significance is also shown, as obtained by the unpaired t-test and
ANOVA test for multiple comparisons.
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2.5. Gene Pathways Analysis

To investigate the possible pathways affected by the miRNAs resulting from dysregu-
lation in the ME/CFS patients, gene pathways and network analyses were performed by
using the MIENTURNET web tool [42]. Potential genes regulated by altered miRNAs were
computationally predicted based on the miRTarBase reference database. The network of
experimentally validated miRNA–target interactions identified by the enrichment analysis
was built while considering both strong and weak experimental methods (Figure 3a).

1 
 

 
Figure 3. Predicted gene pathways of altered miRNAs in ME/CFS plasma. 

(a) Potential pathways affected by miR-127, miR-140, miR-142, miR-143, miR-
150, and miR-448; miRNAs are represented in blue circles, target genes are 
represented in yellow circles, each blue line represents a miRNA-gene 
interaction. (b) Main target genes involved in detected pathways; the top ten 
target genes resulted from the analysis and the number of miRNAs targeting 
them are presented. The color code reflects the adjusted p-values for multiple 
testing (False Discovery Rate, FDR), increasing from red to blue. (c) Functional 
enrichment analysis based on WikiPathways; colors from red to blue of the dots 
represent the adjusted p-values (FDR), whereas the size of the dots represents 
the gene ratio (n° of miRNA targets found in each category/n° of total miRNA 
targets). Analyses and graphical representations were obtained using the 
MIENTURNET tool [42]. 

 

Figure 3. Predicted gene pathways of altered miRNAs in ME/CFS plasma. (a) Potential pathways
affected by miR-127, miR-140, miR-142, miR-143, miR-150, and miR-448; miRNAs are represented
in blue circles, target genes are represented in yellow circles, each blue line represents a miRNA-
gene interaction. (b) Main target genes involved in detected pathways; the top ten target genes
resulted from the analysis and the number of miRNAs targeting them are presented. The color code
reflects the adjusted p-values for multiple testing (False Discovery Rate, FDR), increasing from red
to blue. (c) Functional enrichment analysis based on WikiPathways; colors from red to blue of the
dots represent the adjusted p-values (FDR), whereas the size of the dots represents the gene ratio
(n◦ of miRNA targets found in each category/n◦ of total miRNA targets). Analyses and graphical
representations were obtained using the MIENTURNET tool [42].
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Most predicted interactions involved genes encoding the Zinc Finger Protein 426
(ZNF426), Matrix Metallopeptidase 13 and 14 (MMP13 and MMP14), Signal Transducer
and Activator of Transcription 1 (STAT1), Gene-Spi-C Transcription Factor (SPIC), Single-
Strand-Selective Monofunctional Uracil-DNA Glycosylase 1 (SMUG1), SMAD Family
Member 3 (SMAD3), PR/SET Domain 1 (PRDM1), and Peptidylprolyl Isomerase E (PPIE).

Functional enrichment analysis, performed by considering WikiPathways database to
evidence eventual specific ME/CFS-associated genes (Figure 3c), showed that pathways
regulated by altered miRNAs were involved in extracellular matrix remodeling (matrix
metalloproteinases and Focal Adhesion), cytokines-mediated signaling pathway (IL-6, On-
costatin M, IL-7, and TGF-β), apoptosis, cell-cycle regulation via the P13K-m-TOR signaling
pathway, immune response to microbial infection (NOD pathway), and senescence and
autophagy in pathologic conditions.

No direct positive correlation was detected by the Spearman analysis between any
of the analyzed miRNAs, inflammatory cytokines, and patients’ HHV-6A/B positivity,
while some inverse correlations were observed between miR-448 and all assayed cytokines,
except for IL-17A and TNFα (r range = −0.259/−0.438; p < 0.05) (Supplementary Table S1).

3. Discussion

Currently, the only available diagnostic methods for ME/CFS are clinical, based on
symptom-related criteria, which also leads to undiagnosed or misclassified cases due to
symptom heterogeneity. Thus, specific biomarkers to be used for ME/CFS diagnosis are
urgently needed.

Recently, different expressions of circulating miRNAs have been reported in ME/CFS
patients compared to healthy subjects, suggesting their use as a signature to discriminate
ME/CFS disease. In parallel, HHV-6A/B infection was suggested to be a trigger of ME/CFS
onset and/or progression, and in vitro infection by such viruses was reportedly shown
to induce alterations of miRNA expression in infected cells, possibly correlated with
inflammation, cell apoptosis, and fibrosis [12–17,38–40,43].

Thus, this study aimed to assess, for the first time in the Latvian population, the
diagnostic value of miRNA signatures in distinguishing patients with ME/CFS from
healthy controls. Meanwhile, the status of patients with regard to HHV-6A/B positivity
and concentration of plasma proinflammatory cytokines was analyzed in order to evidence
any eventual correlation with miRNA deregulation.

The expression levels of eight miRNAs, selected based on the literature data [24–26],
were quantified by specific RT-qPCR in plasma samples derived from 40 subjects with
ME/CFS diagnosis and 20 healthy controls. The results evidenced significant upregulation
of miR-142-5p, miR-150-5p, and miR-448 in ME/CFS group, compared to the controls,
confirming previously reported data [24–26]. Moreover, the increases were more evident
and statistically significant in the subgroups of ME/CFS patients showing more severe
symptoms (Subgroups 1 and 2), evidencing a direct correlation between miRNA amount
and symptoms severity. In addition, two more miRNAs were significantly upregulated
in severe ME/CFS patients as compared to the controls: miR-127-3p and miR-143-3p,
suggesting that those miRNAs may be used as markers for severe disease. In our study, miR-
140-5p was the only miRNA significantly downmodulated in ME/CFS subjects compared
to healthy individuals (p = 0.07).

Our results are in line with those reported in other ME/CFS patients’ cohorts. Nineteen
miRNAs were reported to be differentially expressed at the plasma level in ME/CFS
patients compared to non-fatigued controls, and significant upregulations of miR-127-
3p, miR-142-5p, and miR-143-3p were detected [24]. More recently, the plasma levels of
miR-127-3p, miR-140-5p, and miR-150-5p were found to be increased in ME/CFS patients
compared to the controls after post-exertional stress challenge, suggesting miR-127 and
miR-140 as biomarkers to discriminate between patients suffering from ME/CFS and
fibromyalgia [25,29]. In addition, PBMCs of ME/CFS patients were shown to harbor
increased levels of miR-140-5p [23] and miR-150-5p in response to exercise [27].
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From a mechanistical point of view, miR-127-3p expression has been shown to inhibit
the expression of IL-10 via regulation of the B-Cell Lymphoma 6 Protein (BCL6) gene [30].
IL-10, an important anti-inflammatory cytokine that suppresses Th1-related responses, has
been consistently observed to be significantly reduced in the cerebrospinal fluid of ME/CFS
patients in comparison to the controls [44]. In addition, miR-127 upregulation has been
reported to inhibit cell proliferation and induce apoptosis [31,45].

Among the miRNAs found to be upregulated in ME/CFS patients, miR-142-5p has
been reported as being overexpressed in most diseases linked to immunological disor-
ders [46], and miR-143-3p has been identified as a neutrophil-specific miRNA [47] that is
upregulated during increased erythropoiesis in polycythemia [48]. Of note, both miR-142-
5p and miR-143-3p have been proved to interact with TGF-β1 through various mechanisms
and modulate fibrotic processes [33,34,49].

The upregulation observed in our cohort of ME/CFS patients is in line with what was
previously reported, showing that the overexpression of miR-150-5p in ME/CFS correlates
with higher post-exertional malaise scores and symptom severity of patients [25,29]. This
lymphopoietic-specific miRNA regulates many genes involved in the differentiation and
proliferation of immune cells [35,50], and its pivotal role in autoimmune disease such
as autoimmune pancreatitis, systemic SLE, primary Sjögren’s syndrome, and multiple
sclerosis has been pointed out [51–53].

Similarly, plasmatic miR-448 has been already suggested as a valuable biomarker for
distinguishing patients affected by autoimmune diseases, including RA, SLE, SS, ulcerative
colitis, and MS, from healthy controls [26,54]. Based on our knowledge, our results evidence,
for the first time, the potential diagnostic value of miR-448 also in ME/CFS.

Mixed results were instead obtained regarding miR-140-5p, whose expression was
found to be increased in some ME/CFS cohorts [25,29] and decreased in our group of
patients. This miRNA regulates different pathways, including cell proliferation, apoptosis,
and inflammatory cascades [32]; it is implicated in immune-related disorders, through
TLR4/NF-κB signaling modulation, and has been found to be downregulated in several
neoplastic diseases [32].

To have a comprehensive view of the pathways regulated by the miRNAs that were
found to be altered in our ME/CFS cohort, we performed gene pathways and functional
enriched analyses. One of the principal target genes for number of interactions was ZNF426,
encoding a zinc finger transcriptional repressor that modulates the reactivation of Kaposi’s
sarcoma-associated herpesvirus (HHV-8) [55], suggesting a potential role of this target also
in other human herpesviruses. Other identified target genes included MMP13 and MMP14
of the metalloproteinase family, involved in tissue remodeling and cartilage degradation,
which are activated in non-pathological post-exercise conditions but can be associated with
pathologic processes, including tumor invasion and arthritis [56–59]. Further predicted
genes included STAT1, a gene coding cytokine-induced factors, including interferons (IFNs),
EGF, PDGF, and IL-6 [60,61]. STAT1 protein has a crucial role in regulating immune re-
sponses to viral, fungal, and mycobacterial pathogens, and its mutation has been associated
with pathological immunodeficiency [62]. In addition, STAT1 has been recognized to be
involved in chronic fatigue and immune deficiency syndrome (CFIDS) and can mediate
mitochondrial dysfunction by ROS and disruption of ATP production [63]. Another rec-
ognized target gene was SPIC, which controls the development of red pulp macrophages,
which are essential for iron homeostasis and the recycling of red blood cells (RBCs) [64].
The alteration of this pathway could have a role in the phenotypic alteration and decrease
of deformability affecting RBCs of ME/CFS patients, as compared to healthy individu-
als [65]. Last, other genes potentially affected by investigated miRNAs are involved in the
regulation of innate and adaptive immune tissue-resident lymphocyte T cells via the β-IFN
pathway (PRDM1 gene), modulation of the TGF-β signaling pathway (SMAD3 gene), DNA
repair mechanisms (SMUG1 gene), and protein folding (PPIE gene) [66–69].

By contrast, the analysis of the inflammatory status of our ME/CFS cohort, by quanti-
fying the plasmatic levels of seven cytokines, did not reveal specific signatures associated
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with ME/CFS or correlated with disease severity. Rather, we found out that IL-2, IL-21,
IL-6, IL-17A, and TNF-α were significantly decreased in patients compared to controls.
Although these cytokines have a significant proinflammatory role, contradictory data have
been published regarding their role in ME/CFS. In fact, by analyzing whether a signature
of 51 serum cytokines could be associated with ME/CFS and correlated with disease sever-
ity, only TGF-β and resistin appeared to be significantly altered in patients compared to
controls [19]. Notably, despite the fact that resistin is known to have a significant proinflam-
matory role [70], it was decreased in ME/CFS subjects. With regard to IL-2, some studies
reported increased levels in CFS patients compared to controls, whereas, in others, de-
creased IL-2 levels or no difference was reported between patients and control groups [71].
In a similar way, decreased IL-6 levels were reported in mild/moderate ME/CFS patients
compared with both healthy controls and severe ME/CFS patients [72].

The observed results may be due to the use of nonsteroidal anti-inflammatory drugs
and benzodiazepines in ME/CFS patients that could lower the concentration of inflam-
matory cytokines in comparison to the healthy controls, as also reported in the scientific
literature regarding these medications [73]. Thus, taking into account that, in our study,
cytokine levels were measured only in 40 patients, it is not possible to draw general con-
clusions about cytokine signatures related to disease severity in ME/CFS. Similarly, no
significant direct correlation was observed between altered miRNAs and inflammatory
cytokines, while a weak inverse correlation was found between miR-448 and most of the
tested cytokines (IFN-γ, IL-2, IL-21, IL-23, and IL-6). However, this aspect may deserve
further investigation and validation in a larger cohort of patients.

The literature data support the role of HHV-6A/B as a potential trigger of ME/CFS,
highlighting the association between HHV-6A/B infection and ME/CFS develop-
ment [9,22]. In our study cohort, the percentage of HHV-6A/B positive subjects was
doubled in the ME/CFS group compared to the controls (22.5% vs. 10%), and the viral load
in the PBMCs of ME/CFS patients was remarkably higher than in the controls (mean of
44,871.00 copies/106 cells vs. 211.9 copies/106 cells); however, the differences were not
statistically significant, likely due to the low number of subjects included. In this regard,
given that these results may be clues of HHV-6A/B’s involvement in the disease, enlarging
the cohort of patients and controls will be important to confirm, in a statistically significant
way, HHV-6A/B as one of the potential biomarkers for ME/CFS diagnosis.

Limitations of this study included the low number of enrolled subjects and the differ-
ences in mean age between patients and the control group, which should be acknowledged
and taken into account. Future studies should thus expand the number of individuals
and find adequate control cohorts (with matched age and gender) to confirm the role of
ME/CFS-associated miRNAs as potential diagnostic biomarkers in order to further inves-
tigate their possible correlation with inflammatory status and viral infection in ME/CFS
patients and deepen our understanding of the mechanisms by which they may induce viral
and host gene regulation during the disease onset and progression.

4. Materials and Methods
4.1. Study Population

A total of 60 subjects were recruited at the Rı̄ga Stradin, š University outpatient clinic.
The ME/CFS group included 40 patients with ME/CFS clinical diagnosis based on the
Fukuda criteria [2], and based on adapted semi-structured interview questions created
by Minnock et al. [41], patients were stratified into three subgroups according to disease
severity: 1, severe; 2, moderate; 3, mild. The control group included 20 subjects with
no medical history or symptoms of chronic fatigue syndrome. ME/CFS and control
groups were matched in terms of sex distribution; however, due to a lack of healthy
individuals involved in this study, age equality was not achieved. The study was conducted
in accordance with the Declaration of Helsinki and obtained approval by the Ethical
Committee of Rı̄ga Stradin, š University (Ethical code Nr.6-1/05/33 and date of approval
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30 April 2020). Prior to recruitment, informed consent was obtained from all subjects
involved in the study.

4.2. Samples Collection

Ten milliliters of peripheral blood was collected from each participant in EDTA-treated
tubes and immediately transported to the laboratory for processing. PBMCs were isolated
by Ficoll-Hypaque gradient, as previously reported [74]. PBMCs (5 × 105 aliquots) in Trizol
and plasma fractions were frozen and stored at −80 ◦C until the analysis.

4.3. Cytokines Evaluation

Detection of IL-2, IL-17, IL-6, IL-21, IL-23, TNF-α, and IFN-γ levels in plasma samples of
39 ME/CFS patients and 20 healthy controls was carried out with Luminex 200 Instrument
System, using a commercially available kit (MILLIPLEX MAP Human High Sensitivity T Cell
Panel—Immunology Multiplex Assay), according to the manufacturer’s protocol.

4.4. DNA Extraction and Analyses of HHV-6A/B Presence

DNA was isolated from PBMC samples via the phenol–chloroform extraction method;
DNA quality and concentration were evaluated by spectrophotometric reading, using
Nanodrop instrument (ThermoFisher Scientific, Waltham, MA, USA, NanoDrop 1000); and
β-globin PCR was also performed to determine DNA quality, as previously described [75].
HHV-6 Real-TM Quant amplification test (Sacace Biotechnologies; Como, Italy) was used
for quantitative detection of HHV-6A/B in DNA of PBMCs. DNA was amplified using real-
time amplification with fluorescent reporter dye probes specific for pol-gene of HHV-6A/B
and internal control.

4.5. RNA Extraction and miRNA Analysis

Plasma samples were thawed on ice and additionally centrifuged for 10 min at
15,000× g at 4 ◦C to remove residual cellular debris. Total RNA, including miRNA fraction,
was extracted from plasma samples, using the MagMax mirVana Total RNA isolation
kit (ThermoFisher Scientific, Waltham, MA, USA), based on magnetic-bead technology,
following the manufacturer’s instructions. Synthetic ath-miR-159a (ThermoFisher Scien-
tific, Waltham, MA, USA) was combined with plasma samples during the lysis step as
spike-in control to monitor the extraction efficiency. After reverse transcription by the
TaqMan advanced miRNA cDNA synthesis kit (ThermoFisher Scientific, Waltham, MA,
USA), cDNA templates were analyzed by the TaqMan Advanced miRNA assays (Ther-
moFisher Scientific, Waltham, MA, USA). Individual target miRNAs included hsa-miR-448,
hsa-miR-124-3p, hsa-miR-551b-3p, hsa-miR-127-3p, hsa-miR-142-5p, hsa-miR-143-3p, hsa-
miR-140-5p, and hsa-miR-150-5p. In addition, two endogenous controls (hsa-miR-361-5p
and hsa-miR-186-5p) and an exogenous control (spike-in ath-miR-159a) were tested. All
real-time qPCR reactions were performed using the QuantStudio5 instrument (Applied
Biosystem, Waltham, MA, USA).

The expression levels of selected miRNAs were quantified by using the ∆∆Ct method.
Briefly, ∆Ct values were obtained for each sample, subtracting the Ct value of each miRNA
from that of the exogenous control, ath-miR-159a. Secondly, ∆∆Ct values were calculated
for every sample, as the difference between the normalized ∆Ct value and the average ∆Ct
values of controls. Lastly, relative miRNA expression values were calculated and expressed
as 2−∆∆Ct. To avoid heavily skewed data, Log-transformed 2−∆∆Ct values were used for
statistical analysis.

4.6. Gene Pathways and Functional Enriched Analysis

The potential target genes of altered miRNAs were identified by using the MIENTUR-
NET web tool, based on experimentally validated miRNA-target interactions collected in
the miRTarBase reference database [42]. For each gene in the chosen database (TargetScan or
miRTarBase), the hypergeometric test was used to calculate the significance (p-value < 0.05).
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The network of miRNA–target interactions identified by the enrichment analysis was built
considering both strong and weak experimental methods. The thresholds for the minimum
number of miRNA–target interactions and for the adjusted p-values, obtained by using
the Benjamini-Hochberg (False Discovery Rate, FDR) procedure for multiple testing, were
set as 2 and 1, respectively (default settings). A functional enrichment analysis of target
genes of selected miRNAs was performed while considering the following annotation
databases: KEGG, REACTOME, WikiPathways, Disease Ontology. The results obtained
from WikiPathways are shown.

4.7. Statistical Analysis

Statistical analysis and graphical representations were performed using GraphPad
Prism 5.03 software (GraphPad Software, San Diego, CA, USA). Unpaired Student’s t-test
was used to compare miRNAs’ relative expression values between the control group and
ME/CFS patients’ group. One-way ANOVA, followed by Bonferroni’s multiple compar-
isons test and Spearman Correlation analysis, was applied to investigate the correlation
between presence/number of miRNAs and patients’ variables (disease severity and levels
of inflammatory cytokines). Values of p ≤ 0.05 were considered statistically significant. The
statistical power of the study was evaluated during the study design by using G*Power 3.1
free software (Heinrich Heine University Düsseldorf, Düsseldorf, Germany, HHU), error
probability α =0.05, and power level pβ = 0.8.

5. Conclusions

ME/CFS disease has a yet unclarified etiology and suffers from the lack of distinctive
diagnostic biomarkers. Our findings show that specific circulating miRNAs (miR-127-
3p, miR-140-5p, miR-142-5p, miR-143-3p, miR-150-5p, and miR-448), are differentially
expressed in the plasma of ME/CFS patients compared to healthy controls, correlating
with disease severity. Of note, these miRNAs are involved in immune and inflammatory
response pathways, suggesting their role in ME/CFS pathogenesis and their possible use
as useful blood markers to help identify ME/CFS patients. In addition, the collected
data suggest a possible involvement of HHV-6A/B infection as a potential environmental
ME/CFS trigger, though the differences between ME/CFS patients and controls did not
result in being statistically significant.
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