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Abstract: In this technical note, we examine the capabilities of deep convolutional neural networks
(DCNN s) for diagnosing osteoporosis through cone-beam computed tomography (CBCT) scans of
the mandible. The evaluation was conducted using 188 patients’ mandibular CBCT images utilizing
DCNN models built on the ResNet-101 framework. We adopted a segmented three-phase method to
assess osteoporosis. Stage 1 focused on mandibular bone slice identification, Stage 2 pinpointed the
coordinates for mandibular bone cross-sectional views, and Stage 3 computed the mandibular bone’s
thickness, highlighting osteoporotic variances. The procedure, built using ResNet-101 networks,
showcased efficacy in osteoporosis detection using CBCT scans: Stage 1 achieved a remarkable
98.85% training accuracy, Stage 2 minimized L1 loss to a mere 1.02 pixels, and the last stage’s bone
thickness computation algorithm reported a mean squared error of 0.8377. These findings underline
the significant potential of Al in osteoporosis identification and its promise for enhanced medical
care. The compartmentalized method endorses a sturdier DCNN training and heightened model
transparency. Moreover, the outcomes illustrate the efficacy of a modular transfer learning method for
osteoporosis detection, even when relying on limited mandibular CBCT datasets. The methodology
given is accompanied by the source code available on GitLab.

Keywords: artificial intelligence; CBCT; convolutional neural network; dentistry; deep learning;
osteoporosis

1. Introduction

Artificial intelligence (AI) has the potential to revolutionize medical diagnostics by
improving the accuracy, efficiency, and scalability of diagnostic decision making. One key
application of Al in medical diagnostics is in the analysis of medical imaging data, such as
X-rays, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans.
Al algorithms, such as deep learning, can be trained on large datasets of medical images to
aid in early detection or diagnosis by automatically identifying patterns and features that
are indicative of specific diseases or conditions, such as lung cancer, where deep learning
algorithms have been shown to be capable of identification with a high accuracy [1].

Another application of Al in medical diagnostics is in the analysis of electronic health
records (EHRs) and other patient data, such as laboratory test results and vital signs. Al
algorithms incorporating natural language processing (NLP) and machine learning (ML)
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can be trained on large datasets of EHRs to identify risk factors and commonalities which
can lead to the development of specific diseases or medical conditions. For example, NLP
algorithms have been used to extract information from EHRs to predict the likelihood of
patients for readmission to the hospital [1]. Al can also be used to analyze genetic data
and identify genetic markers that could be indicative of specific diseases or the develop-
ment of certain medical conditions, which can aid in early detection and diagnosis. One
such example is the use of ML algorithms to analyze genetic data and identify genetic
markers associated with breast cancer [2]. While Al holds promise in revolutionizing
medical diagnostics, it is not without its drawbacks. A key requirement for Al systems
is the collection of extensive high-quality data for training, which can be challenging.
There is also the issue of potential bias in the data used for training, which could result
in skewed or erroneous predictions. Additionally, comprehending how Al models arrive
at their conclusions remain complex, adding to interpretation difficulties. Although Al
could notably enhance the precision and speed of medical diagnostics, leading to improved
patient care and lower healthcare expenditures, it is essential to address these shortcom-
ings through continued research. Also, responsible and ethical application of Al must
be ensured.

Osteoporosis, a condition that significantly weakens the bones, is recognized by a
decrease in bone mineral density and structural harm to bone microarchitecture, leading
to a marked rise in the chance of fractures [3]. The World Health Organization ranks
it as the second most prevalent health issue following cardiovascular disease, with one
out of three women and one out of five men over 50 experiencing a fracture due to it [4].
Postmenopausal osteoporosis is the most frequently seen variant, accounting for about
62% of cases [5]. Osteoporotic fractures are often a defining disease, with a significant
reduction in the quality of life, or it can even be fatal [6,7]. Consequently, it is vital to
diagnose osteoporosis early and begin preventive or therapeutic measures. However,
dual-energy x-ray absorptiometry (DEXA), the current primary diagnostic tool for os-
teoporosis, is not universally accessible and cannot be used for mass screening. Dental
radiographs have shown promise in evaluating osteoporosis risk, adding value to this
relatively common investigative procedure [8,9]. Nowadays, dental panoramic tomography
(DPT) examinations are performed less for different surgical indications and implant plan-
ning since a sufficiently inexpensive, radiation-proportional three-dimensional examination
method—cone beam computed tomography (CBCT)—is available. CBCT is now considered
to be the main examination method in dental implantology, and is also widely used in other
dental specialties with the number of examinations being performed increasing world-
wide [10]. A CBCT examination is much more informative because it is three-dimensional,
and the different jaw structures are better resolved. This suggests that changes in the
quantity and quality of mandibular cortical bone detected via this examination could be
even more accurate in identifying women at an increased risk of osteoporosis [11]. Our
previous research demonstrated that postmenopausal women lacking teeth and with a
lower bone mineral density also showed a reduction in cortical bone thickness, especially
at the base of the mandible [12]. For this method to be practical in clinical settings and to
avoid the necessity for additional dentist training, the development of an Al tool capable of
detecting osteoporosis in CBCT scans is crucial. There are several studies regarding the use
of different neural network architectures for osteoporosis screening in clinical environments
which can potentially enhance the diagnosis at early stages for patients with untreated
osteoporosis [8,13,14].

On the validity and reliability of mandibular measurements as a biomarker for os-
teoporosis screening, there are studies pointing out that jaw-related fractal dimensions
(FD) presented sensitivity and specificity values higher than 70%, and that sensitivity in
osteoporosis screening was a better parameter than specificity [15].

The novelty of this research lies in its pioneering application of deep convolutional
neural networks (DCNNs) based on the ResNet-101 [16] architecture for the detection
of osteoporotic changes using cone-beam computed tomography (CBCT) images of the
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mandible. This represents an innovative approach to osteoporosis diagnosis, leveraging
machine learning in a way that improves both diagnostic efficacy and explainability.

This study distinguishes itself by utilizing a three-stage modular strategy. Each stage
has a specific purpose and contributes to the overall effectiveness of the diagnostic system.
Additionally, the modular approach with functionally separated tasks provides a more
robust DCNN training process and improved system explainability. This novel approach
also demonstrated that even with limited datasets of mandibular CBCT images, efficient
osteoporosis detection can be achieved using a modular transfer learning strategy.

This project aims to develop a deep neural network for the detection of osteoporosis
risk based on maxillofacial CBCT examinations and to evaluate its performance.

2. Materials and Methods

This study included 188 postmenopausal female patients, aged 54-87 years (average
age 69.1 £ 8.1), who were edentulous or had partial tooth loss and who underwent CBCT
examinations on the same device at the Riga Stradins University Institute of Stomatol-
ogy (Riga, Latvia) due to implant planning. Participation within the study was volun-
tary. This study was approved by the Ethics Committee of Riga Stradin$ University (No.
28/05/10.2017 and No. 2-PEK-4/336/2022). The protocol of this study followed the princi-
ples stated in the Declaration of Helsinki. The list of the software used in this research is
provided in Table 1.

Table 1. The list of software used.

Software/Platform Version
3D Slicer 5.2.1
Python 3.8
PyTorch 1.4
OnDemand 3DTM 1.0.10.7462
Windows 11 Pro
Ubuntu 20.04 LTS

2.1. CBCT Examinations

All CBCT examinations were performed on the same device (i-CAT Next generation,
KaVo Dental GmbH, Warthausen, Germany). All examinations were performed with the
following parameters: 120 kVp, 5 mA, 4 s exposure time, 0.3 mm voxel size, and 160 mm
(diameter) x 130 mm (height) field of view (FOV) size.

2.2. Dual-Energy X-ray Absorptiometry

The general bone mineral density (BMD) of the lumbar spine vertebra (L2-L4) and
both femoral necks (total hip mean) was assessed using dual-energy X-ray absorptiometry
(DXA) (Lunar DEXA DPX-NT, GE Medical Systems). The worst T-score reading from
both areas was used. Patients were divided into three groups based on the T-score read-
ings: normal BMD (T-score > —1.0), osteopenia (T-score —1.0 to —2.5), and osteoporosis
(T-score < —2.5) [17]. All measurements were performed by one experienced specialist.

2.3. Methodology of Medical Measurements on CBCT Images and Radiological Data Acquisition

The obtained data were processed and analyzed using OnDemand3DTM (Cybermed
Inc., Seoul, Korea). In the dental module system, the axial slice of the mandible in which
both mental foramens were clearly visible was selected. Then, a panoramic cutting curve
was manually placed in the middle of the mandible.

In the axial slice, 4 regions were created by cutting along the mandibular arch line.
A cross-sectional image of the mandible was obtained for each region: the lateral in-
cisor region (9 mm distal from the midline), the first premolar region (6 mm anterior
to the midpoint of the foramen mentale), the foramen mentale region (midpoint of the
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foramen mentale), and the first molar region (6 mm distal to the midpoint of the foramen
mentale) (Figure 1).

Figure 1. Mandibular regions where measurements were taken. (A) Lateral incisor region, (B) first
premolar region, (C) foramen mentale region, and (D)first molar region.

2.3.1. Trabecular and Cortical Bone Volume

In each region, a 10 mm long line was drawn along the longitudinal axis of the
mandible in the coronal direction from the inferior border of the cortical trabecular bone
border. Above the line, a perpendicular line was drawn between the vestibular and the
lingual borders of the mandible. In this region, the total cross-sectional area of the jawbone,
the total size of the trabecular bone area, and the difference between the two—the size of
the cortical bone area—was measured according to a previously described methodology
(Figure 2) [12].

2.3.2. Cortical Bone Thickness

Lingual and vestibular cortical bone thicknesses were measured on the previously
drawn horizontal line, which is perpendicular to the 10 mm long line. The thickness of the
basal cortical bone was measured just below the 10 mm long vertical line (Figure 3). These
measurements were taken in each of the designated mandibular regions, except for the
measurement of the vestibular cortical bone in the foramen mentale region.
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Figure 2. Measurement of bone area (total, trabecular, and cortical) in the basal part of the mandible.
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Figure 3. Measurements of the cortical bone thickness. (A) Vestibular cortical bone thickness,
(B) lingual cortical bone thickness, and (C) basal cortical bone thickness.
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2.3.3. Determination of the Computed Tomography Cortical Index (CTCI)

In the multi-planar reconstruction (MPR) view of the Dental Module system, a modi-
fied parasagittal image of the mandible was obtained according to the method described
by Koh et al. [14] The CTCI was determined by evaluating the condition of the cortical
bone structure of the mandible distal from the mental foramen in the obtained parasagittal
image, and it was classified into three groups:

C1: the outer edge of the cortical bone is flat and well demarcated;
C2: the cortical bone layer is characterized by semilunar defects or one to two
resorption lacunae;

e (C3: multiple (>3) resorption lacunae in the cortical layer and the inner edge of
the cortical bone is markedly rough, while the cortical bone structure is markedly
porous [18,19] (Figure 4).

Figure 4. Computed tomography cortical index. (A) C1, the endosteal margin of the cortex was sharp
and even; (B) C2, the endosteal margin appears semilunar defects or 1 to 2 resorption lacunae; (C) C3,
the cortical layer formed heavy endosteal residues and was clearly porous.

The index was determined on both sides of the jaw, while the worst reading from both
areas was considered.

2.3.4. Determination of the Computed Tomography Cortical Index (CTCI) from Panoramic
Reconstructed Image

In the Dental Module (Dental) system, an axial section of the mandible was se-
lected in which both foramina mentale were clearly visible. A panoramic cutting curve
was manually traced around the middle of the mandible. From this, a panoramic image is
automatically constructed.

The panoramic image was reconstructed with two different slice thicknesses,
10.25 mm and 20.00 mm. The index was determined on both sides of the jaw (filter:
HighBoost) in a region of 1.5-2 cm distal to the foramen mentale. The worst reading between
the two was taken (Figure 5).

Figure 5. Determination of the cortical index from panoramic reconstruction image.
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2.4. The Overall Methodology of Technical Implementation of the Deep Neural Network

The complete dataset consisted of 188 observations. The labeling process was per-
formed following the methodology described in Section 2.1.

The list of all software is available in Table 1, while the list for hardware can be seen
in Table 2.

Table 2. The list of hardware used.

Type Manufacturer Model
Central Processing Unit (CPU) AMD Rome 7742
Graphical Processing Unit (GPU) Nvidia A100
Random Access Memory (RAM) Kingston 64 GB
Solid State Drive (SSD) Samsung 970EVO (200 GB)

1. Overview of the Modular Neural Network:

The methodology is centered on a modular neural network, an integrated system
composed of two primary neural networks rooted in the ResNet-101 architecture.

1.1. ResNet-101 Introduction: ResNet-101 is renowned for its depth, encompassing
101 layers. Its core strength lies in its deep residual learning, effectively tackling the
vanishing gradient problem. The architecture enhances performance using its distinct
3 x 3 pixel filters and 1 x 1 convolution layers. The inclusion of average pooling layers
in place of fully connected ones reduces the parameter count, aiding in deeper function
representation with fewer parameters [16].

2. Radiological Data Pre-processing:

2.1. Data Acquisition: Data were initially captured in the NRRD file format, a standard
for storing multidimensional data like CT images.

2.2. Data Conversion: For compatibility and ease of processing, these NRRD files
underwent a conversion process into a numpy container format, which is more amenable
to data manipulation and neural network operations.

2.3. Normalization: Recognizing the variations inherent in radiological data, normal-
ization was performed. This process reassigned values within each volume, pegging the
minimum and maximum values to —0.5 and 0.5, respectively, ensuring uniformity and
aiding the neural network in effective pattern recognition.

2.4. Labeling: Manual labeling, a crucial step, was executed. Experts meticulously
identified and labeled the slice in the axial plane, focusing on clear visibility of both
foramina mentale.

3. First Classification ResNet-101 Network:

3.1. Network Initialization: A neural network based on the ResNet-101 architecture
was initialized with random weights and biases.

3.2. Training: With the labeled dataset, the network underwent a supervised training
regimen, refining its weights and biases.

3.3. Output Analysis: The post-training scenario presented the network’s ability to
classify slices into two categories, “yes” (presence of mandibular bone) or “no”. Each
classification was accompanied by a probability value indicating the network’s confidence
in its decision.

3.4. Weight Storage: To ensure repeatability and avoid retraining, all weights obtained
during training were meticulously stored in a separate digital file.

3.5. Validation: Post-training, a separate validation set was used to evaluate the
model’s performance. Key metrics like accuracy, recall, and precision were computed to
assess model robustness.

3.6. Image Data Processing: A comprehensive image dataset was fed into the network.
For each slice, the network computed and assigned a probability coefficient, indicating the
likelihood of that slice containing the mandibular bone.
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3.7. Optimal Slice Identification: An algorithmic approach was employed to sift
through probability coefficients, selecting the slice with the highest value, earmarking it for
subsequent analyses.

In the initial stage, we utilize the ResNet-101 neural network model for a classification
task. We sourced the ResNet-101 model from PyTorch’s official library. Modifications were
carried out in the final layers of the ResNet-101 model to better suit our desired outcomes.
The outcomes were categorized into two classes: “correct slice” and “incorrect slice”.

The goal at this stage is to identify the accurate jaw slice from MRI digital images. The
neural network vertically scans all slices and selects the one representing the jaw. As we
proceed to future phases, this specific slice becomes crucial for making an orthogonal cut
in a designated jaw area. Essentially, slices showcasing the jaw are deemed valid, serving
as a benchmark for subsequent stages. Theoretically, only a single slice is the correct one,
showcasing two mandibles. However, in practical scenarios, one or two slices immediately
above or below may also be considered as valid. The slice with the highest probability is
the one we extracted.

Regarding model adjustments, we replaced the initial convolution layer with another
convolutional layer. This new layer has an input of 1 and 64 output channels, with a kernel
size of (7.7), a stride of (2.2), padding of (3.3), and no bias. The final layer, known as the fully
connected layer (fc), has been substituted with a series of layers: Linear(2048, 512), ReLu,
Dropout(0.2), Linear(512, 2), and a softmax layer. These fc layers facilitate classification.

For optimization, we have chosen the SGD optimizer with a learning rate of 0.001, and
utilized the cross-entropy loss metric. Additionally, the data need to be in the .npy format
for processing (Algorithm 1).

Algorithm 1: Modification of the initial convolution layer

from torchvision.models import resnet101
model_transfer = resnet101(pretrained=True)
# (convl): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
model_transfer.convl = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
classifier = nn.Sequential(nn.Linear(2048, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 2),
nn.Softmax()
)
model_transfer.fc = classifier
16:24
cel = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), Ir=0.001)

4. Second Regression ResNet-101 Network:

4.1. Objective Setting: This network was specifically designed to detect seven pivotal
points on the identified slice, five associated with the mandibular bone line and two
marking the mandibular nerve canals.

4.2. Training Regimen: Leaning on the previously labeled data, the network is trained,
with a focus on accurately detecting these seven points.

4.3. Post-Training Analysis: Once trained, the network’s capabilities are harnessed to
determine the mandibular bone line and calculate the perpendicular intersection zone of
the mandibular bone.

The second phase focuses on a regression task. For this, we leveraged the advanced
ResNet-101 architecture. The input to this network is the correct MRI slice identified in the
initial stage. The model yields 14 output classes. Each of these classes provides a value
representing either the x or y coordinate of a point, with a total of 7 points. Adjustments
have been carried out in the classification layer similar to the first phase, but in this case, the
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subsequent linear layer is designed to output 14 classes, detailing the x and y coordinates
for each respective point (Algorithm 2).

Algorithm 2: Modification of the classification layer

from torchvision.models import resnet101
model_transfer = resnet101(pretrained=True)
# (convl): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
model_transfer.convl = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
classifier = nn.Sequential(nn.Linear(2048, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 14))
model_transfer.fc = classifier
cel = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), Ir=0.001)

5. Third Stage—Thickness Analysis:

5.1. Thickness Computation: Utilizing the data from the earlier stages, algorithms
were developed to precisely calculate the thickness of the mandibular cortical bone, con-
trasting these readings against a predetermined “ground truth”.

5.2. Bone Intersection Analysis: Leveraging a deterministic function, perpendicular
bone intersections were computed. These intersections offered insights into bone thickness,
factoring in density differentials.

In the initial phase of the third stage, we must identify the mandible bone section
that was cut during the second stage. Next, in this stage, we can measure the thickness of
this cut bone section. This code aims to pinpoint two specific points, and the difference
between these points will indicate the bone’s thickness. These points are saved in the
variables “intl” and “int2”. Since bone thickness varies across different parts, we can gauge
diverse thicknesses in distinct areas of the bone. Subsequently, we can compare these
measurements to determine the thinnest and thickest sections of the bone (Algorithm 3).

Algorithm 3: Identifying Boundary Points

def GetDIFF(im):

im = np.rot90(im, k=3)

ind1 = list()

ind2 = list()

# | == Find all potential points == |

for i, colmn in enumerate(im):

if sum(colmn)!=0:

region = deepcopy(colmn)
ind1.append([np.argmax(colmn),il) # [i, im.shape[1]-np.argmax(colmn)])
region[:mp.argmax(colmn)]=1
ind2.append([np.argmin(region),i])

3. Results

In the first stage, a classification network was created based on ResNet-101 to detect
the correct slice from the CBCT scan where the whole mandibular canal is visible. The
maximum accuracy (98.85%) of the training process was reached at the 39th epoch, which
is plotted in Figure 6, while the accuracy of the validation process (93.99%) was reached at
the 35th epoch, which is plotted in Figure 7.
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Figure 7. The accuracy of the validation process.

The ResNet deep neural network was trained using the Stochastic Gradient Descent
(SGD) optimizer with a learning rate (LR) of 0.001.

The dataset was randomly divided into training and validation sets in a ratio of 70:30.

In the second stage, a regression network based on ResNet-101 was created and
trained to draw a line across the mandibular bone based on five points, and then, another
line was drawn between two points which intersect the canal itself. The minimum L1 loss
(showing how close the real points are to the estimated ones) of the training process reached
1.86 pixels (px) at the 30th epoch, which is plotted in Figure 8, while the minimum loss of
the validation process reached 1.02 pixels at the 70th epoch, which is plotted in Figure 9.
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Figure 9. The L1 loss (mean absolute error) of the validation process.

In this stage, the ResNet deep neural network is trained using the Adam optimizer
with a learning rate of 0.001.

It is possible to convert pixels to millimeters by multiplying the pixel value by a
conversion factor of 0.3.

In the third stage, an algorithm was created to measure mandibular bone cortical
thickness from a particular CBCT slice which is used to determine the presence or absence
of osteoporotic changes. The empirical error distribution for this stage is depicted in
Figure 10.
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Figure 10. Empirical error distribution of the mandible cortical bone thickness estimation.

The mean squared error (MSE) for the estimation of mandible bone thickness was
0.8377, and the mean value was 0.018080 mm.

In Stage 3, 180 observations of mandibular bone thickness were used because not all
patient data had been labeled.

The standard deviation (SD) for the true mandibular bone thickness was 0.9609 mm,
and the mean value was 2.9712 mm.

4. Discussion

This paper outlines an algorithm that utilizes a deep convolutional neural network
model to classify CBCT images of mandibular bone tissue for indications of osteoporotic
changes. The neural networks suggested herein have demonstrated a commendable clas-
sification accuracy of 93.99% in Stage 1, a validation L1 loss approximating 1.02 px in
Stage 2, and a Mean Squared Error (MSE) of 0.8377 when estimating mandibular cortical
bone thickness in Stage 3, which holds medical significance. This serves as a strong in-
dicator that appropriately devised and trained convolutional neural networks have the
potential to lay the groundwork for the creation of an efficacious diagnostic technique
for osteoporosis via the classification of mandibular bone tissue CBCT images [20]. The
next steps of our research involve establishing a comprehensive diagnostic system for
osteoporosis, grounded in CBCT images of the mandible and other bones impacted by this
condition [21]. Turning this prototype diagnostic system into a practical application would
necessitate testing it on a larger cohort of patients, along with enhancing the classification
accuracy and sensitivity of the algorithm [22].

In terms of limitations, the limited size of the patient sample, consisting of only
188 participants, might reduce the generalizability of the findings to broader populations.
For this model to be effectively utilized in clinical settings, it needs to be validated on
larger and more diverse datasets, which may capture a broader range of bone densities,
age-related changes, and other possible factors affecting bone health.

Secondly, this study heavily relies on the ResNet-101 topology, which, while effective
in this context, may limit the exploration of other, potentially more suitable, architectures for
this specific task. While the study showed promising results, more comparisons with other
DCNN topologies could potentially improve the accuracy of the detection of osteoporotic
changes; however, there are no studies with a similar methodology to ours and that utilize
the same ResNet-101 DCNN architecture. In addition, the difference regarding the size
of the cohort group and hyperparameters should be noted [23]. Its great potential is
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outlined in the Guerra study about the utilization of CBTC images for radiomorphometric
indices which can be used for osteoporosis diagnoses [24]. The validity of this index-
based approach was proven in the De Castro study, which showed that this approach can
distinguish women with osteoporosis from those with normal BMD with good sensitivity
and specificity [25].

Thirdly, while the modular approach offers increased explainability and seems to
improve the training process, it is also inherently complex and may introduce additional
challenges and potential points of failure. Each stage is dependent on the success of the
previous one, and hence, errors in the earlier stages might propagate through the pipeline
and negatively affect the final results.

Finally, this study highlights the need for further refinement of this approach. As the
algorithm’s performance metrics show acceptable but not exceptional outcomes, it is clear
that further tuning and improvement are needed before this methodology could be widely
adopted in clinical settings. Improving the accuracy and reducing the error in mandibular
bone thickness measurements should be prioritized in future work.

5. Conclusions

In conclusion, this study illustrated the potential of deep convolutional neural net-
works (DCNNs) in diagnosing osteoporosis using cone-beam computed tomography
(CBCT) images of the mandible. It employed CBCT scans from 188 patients and a DCNN
based on the ResNet-101 architecture to analyze these scans.

This research offers an innovative three-stage modular approach for detecting os-
teoporosis. Each stage carries a specific functional goal, enhancing the effectiveness and
explainability of the diagnostic process. Stage 1 focuses on the application of a DCNN
for slice detection in the mandibular bone. Stage 2 pinpoints the locations for creating
cross-sections of the mandibular bone. In the final stage, Stage 3, an algorithm calculates
the thickness of the mandibular bone to identify potential osteoporotic changes.

The impressive results from each stage—98.85% training accuracy in Stage 1, an L1
loss reduction to 1.02 pixels in Stage 2, and a minimal mean squared error of 0.8377 in
Stage 3—demonstrate the considerable promise of Al in osteoporosis detection and pro-
moting healthcare. This modular transfer learning strategy proves its efficiency even with
limited datasets of mandibular CBCT images.

While these findings are promising, further research is necessary to refine this ap-
proach, expand its application, and confirm its effectiveness on a larger scale. The ultimate
goal is to contribute to improved patient care through the early and accurate detection of
osteoporosis. As such, the modular approach presented here has the potential to facilitate
a more robust DCNN training process and enhance the explainability of the Al system,
making it an important avenue for future exploration.
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