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Abstract: Liposomes and other nanoparticles have been widely studied as innovative nanoma-
terials because of their unique properties. Pyridinium salts, on the basis of 1,4-dihydropyridine
(1,4-DHP) core, have gained significant attention due to their self-assembling properties and DNA
delivery activity. This study aimed to synthesize and characterize original N-benzyl substituted
1,4-dihydropyridines and evaluate the influence on structure modifications on compound physico-
chemical and self-assembling properties. Studies of monolayers composed of 1,4-DHP amphiphiles
revealed that the mean molecular areas values were dependent on the compound structure. Therefore,
the introduction of N-benzyl substituent to the 1,4-DHP ring enlarged the mean molecular area by
almost half. All nanoparticle samples obtained by ethanol injection method possessed positive surface
charge and average diameter of 395–2570 nm. The structure of the cationic head-group affects the
size of the formed nanoparticles. The diameter of lipoplexes formed by 1,4-DHP amphiphiles and
mRNA at nitrogen/phosphate (N/P) charge ratios of 1, 2, and 5 were in the range of 139–2959 nm and
were related to the structure of compound and N/P charge ratio. The preliminary results indicated
that more prospective combination are the lipoplexes formed by pyridinium moieties containing N-
unsubstituted 1,4-DHP amphiphile 1 and pyridinium or substituted pyridinium moieties containing
N-benzyl 1,4-DHP amphiphiles 5a–c at N/P charge ratio of 5, which would be good candidates for
potential application in gene therapy.

Keywords: N-benzyl 1,4-dihydropyridines; pyridinium amphiphiles; langmuir monolayer; mean
molecular area; self-assembling; nanoparticles; lipoplexes; DLS

1. Introduction

The application of nanotechnology from material science to healthcare has led to
the development of a variety of novel nanoproducts which have substantially improved
the disease diagnosis, monitoring, and treatment [1]. Various basic nanomaterial forms
have been tested in the field of drug delivery and diverse therapies. The small size of
nanoparticles as delivery systems allows them to cross biological barriers and target tumors,
tissues, and individual cells [2].

Due to their unique properties, liposomes and other nanoparticles have been widely
studied as innovative nanomaterials for the transmembrane delivery of a wide range of
carriers (DNA, RNA, drugs, magnetic dots, etc.) [3,4]. Liposomes are composed of a lipid
bilayer with an outside aqueous core, and each of them can be employed for the transport
of drugs in the treatment of disease [5]. When compared to the traditional drug delivery
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systems, liposomes exhibit good biocompatibility, dual character (ability to entrap either
hydrophobic or hydrophilic drugs) [6], an ability to protect the encapsulated substances
from physiological degradation [7], extend the half-life of the drug, and control the release
of drug molecules with lower toxic side effects [8]. All this reveals the potential of liposomes
as prospective delivery systems. Thus, numerous liposomal drug formulations have been
approved and have started to be used in clinics [9], mainly for cancer treatment [10].
Recently, the successful application of liposomal delivery systems was verified in two
COVID-19 messenger RNA (mRNA) vaccines from Pfizer/BioNTech and Moderna [11].

Various delivery system physicochemical attributes, such as size, surface chemistry,
shape, and mechanical flexibility, influence their therapeutic futures, i.e., particle uptake
and uptake mechanism, blood circulation time, and biodistribution [12]. The physico-
chemical properties of parent natural or synthetic lipids forming these nanocarriers highly
influence the resulting properties of delivery systems. Thus, variations of substituents, and
their lipophilicity, steric, and electronic nature, could significantly influence the proper-
ties of delivery systems, forming monomers and final nanoaggregates—size, shape, and
surface charge (zeta-potential)—with the following effect on particle–cell interactions and
biodistribution [13–15].

Previous studies of our research group have demonstrated that 1,4-dihydropyridines
(1,4-DHPs) containing pyridinium salts as substituents demonstrated self-assembling prop-
erties and formed liposomes. Some of these class members showed DNA delivery potential.
Several representatives (for example, comp.1; Figure 1) appeared to be more active for DNA
delivery than commercially available cationic lipid DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-
N,N,N-trimethyl ammonium methylsulfate) and polymer PEI 25 (polyethyleneimine of
25 kDa) and have potential for use as transmembrane delivery systems [16,17]. The men-
tioned amphiphiles contain 1,4-DHP group as an active linker and, as stated by Triggle [18],
are an intrinsic structural part of many pharmacologically active compounds and drugs.
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Figure 1. Structure of 1,4-DHP amphiphile—1,1′-{[3,5-bis(dodecyloxycarbonyl)-4-phenyl-1,4-
dihydropyridine-2,6-diyl]bis(methylene)}bis(pyridin-1-ium) dibromide (1).

The first metabolic step of 1,4-DHPs is their oxidation to the pyridines. Therefore,
it was rational to investigate the properties of oxidized forms of the previously studied
1,4-DHP lipids. Synthetic polyfunctional lipids on a base of pyridines have been designed
and studied for the evaluation of structure–activity relationships [19]. The latest data
have confirmed that cationic moieties remoted from the linker change the delivery activity
of cationic 1,4-DHPs [20]. The magnetoliposomes comprised from liposomes filled with
magnetic iron oxide nanoparticles [21] and magnetic nanoparticles modified with pyri-
dinium moieties containing 1,4-DHP demonstrated bactericidal and immunomodulatory
properties [22]. Recently, the antiproliferative activity of amphiphilic 1,4-DHP has been
described against cancer cell lines HT-1080 and MH-22A, along with low cytotoxicity to-
wards non-cancerous NIH3T3 cells [23]. Some fluorescent fragment containing 1,4-DHP
amphiphiles—a derivative with 4-(2-(naphthalen-2-yl)vinyl)pyridinium moieties [24] and
4-(anthracen-9-yl)pyridinium ones [25]—were obtained and characterized. The photolumi-
nescence quantum yield values for the EtOH solution of these compounds were 1.0 and
10.8%, respectively. In this respect, synthesized synthetic lipids have the potential to be
used in the development of prospective theragnostic delivery systems.

As a part of our current research program towards the development of novel syn-
thetic delivery systems, we have continued studies to establish structure–activity rela-
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tionships. In this work we have evaluated the influence of N-benzyl substituent at the
1,4-dihydropyridine ring on physicochemical and self-assembling properties of the parent
compound. We have performed characterization of monolayers composed of the tested
amphiphiles, estimated self-assembling properties, and described the nanoparticles and
lipoplexes formed by the amphiphiles. All the data acquired for the novel N-benzyl 1,4-
DHPs were compared to the N-unsubstituted 1,4-DHP 1 as a control. The results may
help to clarify the further conception of the structure–activity and liposome parameter
relationships of 1,4-DHP amphiphiles as prospective delivery systems.

2. Materials and Methods
2.1. General

All reagents were purchased from Acros Organics (Geel, Belgium), Alfa Aesar (Lan-
cashire, UK), or Sigma-Aldrich/Merck KGaA (Darmstadt, Germany), and were used
without further purification. Tin layer chromatography (TLC) was performed on silica
gel 60 F254 aluminum sheets 20 cm × 20 cm (Merck KGaA, Darmstadt, Germany) and
visualized under UV (254 nm) light and was used to monitor reaction progress. Silica
gel of particle size 35–70 µm (Merck KGaA, Darmstadt, Germany) was used for column
chromatography for purifications of the compounds. Melting points (mp) were determined
on an OptiMelt digital melting point apparatus (Stanford Research Systems, Sunnyvale, CA,
USA) and were uncorrected. Proton Nuclear Magnetic Resonance (1H NMR) spectra were
recorded with a Bruker Avance Neo (400 MHz) spectrometer and Carbon Nuclear Mag-
netic Resonance (13C NMR) spectra were recorded with a Bruker Avance Neo (101 MHz)
spectrometer (Bruker Biospin Gmbh, Rheinstetten, Germany). The obtained data were used
for identification of compound structures. Chemical shifts of the hydrogen and carbon
atoms are presented in parts per million (ppm) and referred to as the residual signals of
the non-deuterated CDCl3 (δ: 7.26) or partially deuterated DMSO-d6 (δ: 2.50) solvents for
the 1H NMR spectra and CDCl3 (δ: 77.16) or DMSO-d6 (δ: 39.5) solvents for 13C NMR, re-
spectively. Coupling constants J were reported in hertz (Hz). High resolution mass spectra
(HRMS) were determined on an Acquity Ultra High Performance Liquid Chromatography
(UPLC) H-Class system (Waters, Milford, MA, USA) connected to a Waters Synapt GII
Q-ToF operating in the ESI positive ion mode on a Waters Acquity UPLC® BEH C18 column
(1.7 µm, 2.1 mm × 50 mm, using gradient elution with acetonitrile (0.1% formic acid) in
water (0.1% formic acid). High Resolution Mass Spectrometry (HRMS) data were used to
determine the exact molecular masses of compounds. Elemental analyses were determined
on an Elemental Combustion System ECS 4010 (Costech International S.p.A., Milano, Italy).
Infrared spectra (IS) were recorded with a Prestige-21 FTIR spectrometer (Shimadzu, Kyoto,
Japan) and were used for structure confirmation. Flash column chromatography was ac-
complished using flow chromatography (Armen Instrument—Spot Flash System Interchim,
Montluçon, France). The characterization of monolayers was performed by Langmuir
trough (Medium trough, KSV NIMA Instruments, Espoo, Finland; Atotal = 243 cm−2). The
Dynamic Light Scattering (DLS) measurements of the nanoparticles in the aqueous solu-
tion were carried out on a Zetasizer Nano ZSP (Malvern Panalytical Ltd., Malvern, UK)
instrument with Malvern Instruments Ltd. Software 8.01.4906.

2.2. Synthesis of Compounds
2.2.1. Didodecyl 1-Benzyl-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (2)

A solution of dodecyl acetoacetate (10.3 g, 0.038), phenylmethanamine hydrochloride
(2.73 g, 0.019 mol) and benzaldehyde (2.00 g, 0.19 mol, 1.90 mL) in pyridine (20 mL) was
refluxed for 30 h. The reaction mixture was poured into an ice/water mixture (~100 mL),
extracted with CH2Cl2 (3 × 30 mL), and the organic phase was washed with 1N HCl
(3 × 30 mL). The solvent was evaporated in vacuo, after which the residue was crystallized
from MeOH and dried in vacuo. The desired product was obtained as a pale-yellow solid
(6.17 g, 46%), mp 102–104 ◦C. Rf = 0.23 (EtOAc:PE, 1:10).
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1H NMR (400 MHz, CDCl3) δ (ppm): 7.24–7.12 (m, 8H), 6.96–6.92 (m, 2H), 5.23 (s,
1H), 4.85 (s, 2H), 4.09 (t, J = 6.6 Hz, 4H), 2.43 (s, 6H), 1.67–1.58 (m, 4H), 1.31–1.23 (m, 36H),
0.88 (t, J = 6.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ (ppm): 168.36, 148.89, 146.58, 137.98,
128.93, 128.08, 127.40, 126.19, 126.08, 107.09, 64.34, 49.69, 38.29, 32.06, 29.82, 29.79, 29.77,
29.72, 29.50, 29.45, 28.87, 26.24, 22.83, 16.83, 14.25. IR νmax (film) 2917, 2849, 1695, 1671,
1629, 1570 cm−1. HRMS TOF ES+ of [C46H69NO4-2H+H]+ (m/z) 698.5155; calcd: 698.5148.
Anal. calcd. for C46H69NO4: C, 78.92; H, 9.94; N, 2.00; found: C, 78.90; H, 10.14; N, 2.01.

2.2.2. Didodecyl 1-Benzyl-2,6-bis(bromomethyl)-4-phenyl-1,4-dihydropyridine-3,5-
dicarboxylate (3)

To a solution of didodecyl 1-benzyl-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-
dicarboxylate (2) (1.0 g, 140 mmol) in methanol (250 mL), a solution of NBS (0.51 g,
285 mmol) in methanol (50 mL) was added dropwise. The reaction mixture was stirred at rt
for 2 h, and the completion of the reaction was monitored by TLC. The reaction mixture was
cooled to 4 ◦C, precipitate was filtered off and washed with water, and the crude product
was purified by flash column chromatography with gradient elution: EtOAc:hexane 0:100
to 15:85%, to give the desired product 3 as a yellow solid (0.88 g, 74%), mp 63–65 ◦C.
Rf = 0.47 (EtOAc:PE, 1:10).

1H NMR (400 MHz, CDCl3) δ (ppm): 7.25–7.21 (m, 3H), 7.19–7.13 (m, 3H), 7.07 (t,
J = 7.5 Hz, 2H), 6.66 (d, J = 7.5 Hz, 2H), 5.38 (s, 1H), 5.12 (s, 2H), 4.95 (br. s, 2H), 4.73 (br.
s, 2H), 4.24–4.14 (m, 4H), 1.71–1.63 (m, 4H), 1.33–1.23 (m, 36H), 0.88 (t, J = 6.8 Hz, 6H).
13C NMR (101 MHz, CDCl3) δ (ppm): 166.72, 147.46, 144.21, 137.06, 129.14, 128.37, 127.81,
127.18, 126.81, 126.06, 109.42, 65.32, 48.49, 37.59, 32.07, 29.82, 29.79, 29.75, 29.71, 29.51, 29.42,
28.76, 26.20, 25.12, 22.84, 14.27. IR νmax (film) 3064, 2952, 2925, 2854, 1694, 1624, 1576 cm−1.
HRMS TOF ES+ of [C46H67NO4Br2+H]+ (m/z) 856.3491; calcd: 856.3515. Anal. calcd. for
C46H67Br2NO4: C, 64.41; H, 7.87; N, 1.63; found: C, 64.03; H, 7.86; N, 1.67.

2.2.3. General Procedure for Synthesis of 1,1′-((1-Benzyl-3,5-bis(dodecyloxycarbonyl)-4-
phenyl-1,4-dihydropyridine-2,6-diyl)bis(methylene))bis(pyridin-1-ium) Dibromides 5

To a stirred solution of didodecyl 1-benzyl-2,6-bis(bromomethyl)-4-phenyl-1,4-
dihydropyridine-3,5-dicarboxylate (3, 0.17 mmol) in acetone (10 mL) at r.t., the corre-
sponding pyridine derivative (0.35 mmol) was added, and the resulting mixture was stirred
at r.t. for 24 h. The reaction was monitored by TLC. The reaction mixture was cooled to
4 ◦C, and the precipitates were filtered off, washed with cold acetone, and dried in vacuo
to give the desired dibromides 5.

1,1′-((1-Benzyl-3,5-bis((dodecyloxy)carbonyl)-4-phenyl-1,4-dihydropyridine-2,6-
diyl)bis(methylene))bis(pyridin-1-ium) Dibromide 5a

Pale yellow solid, yield 35%, mp 147 ◦C (decomp.). Rf = 0.21 (sat. KNO3:H2O:Acetone,
1:4:80).

1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.88 (d, J = 6.2 Hz, 4H), 8.55 (t, J = 7.7 Hz,
2H), 8.07 (dd, J = 7.7, 6.2, Hz, 4H), 7.29–7.19 (m, 3H), 7.19–7.13 (m, 3H), 7.02 (t, J = 7.6 Hz,
2H), 6.75 (d, J = 7.2 Hz, 2H), 6.39 (AB-system, J = 16.3 Hz, 2H), 5.79 (AB-system, J = 16.3 Hz,
2H), 5.31 (s, 1H), 4.81 (s, 2H), 4.17–4.07 (m, 4H), 1.59–1.50 (m, 4H), 1.26–1.18 (m, 36H), 0.85
(t, J = 6.6 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 165.67, 146.24, 144.12, 142.74,
141.15, 135.80, 128.58, 128.31, 128.25, 127.87, 126.99, 126.97, 126.92, 115.45, 65.31, 55.33,
48.39, 40.15, 39.94, 39.73, 39.52, 39.31, 39.10, 38.89, 38.23, 31.31, 29.08, 29.02, 28.99, 28.73,
28.69, 27.92, 25.57, 22.10, 13.95. IR νmax (film) 2952, 2922, 2852, 1719, 1699, 1631, 1594 cm−1.
HRMS TOF ES+ of [C56H77N3O4-2H+H]+ (m/z) 854.5842; calcd: 854.5836. Anal. calcd. for
C56H77Br2N3O4: C, 66.20; H, 7.64; N, 4.14; found: C, 66.15; H, 7.58; N, 4.25.
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1,1′-((1-Benzyl-3,5-bis((dodecyloxy)carbonyl)-4-phenyl-1,4-dihydropyridine-2,6-
diyl)bis(methylene))bis(4-methylpyridin-1-ium) 5b

Pale yellow solid, yield 50%, mp 179 ◦C (decomp.). Rf = 0.28 (sat. KNO3:H2O:Acetone,
1:4:80).

1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.72 (d, J = 6.7 Hz, 4H), 7.93 (d, J = 6.7 Hz,
4H), 7.29–7.13 (m, 6H), 7.02 (t, J = 7.7 Hz, 2H), 6.72 (d, J = 6.9 Hz, 2H), 6.34 (AB-system,
J = 16.2 Hz, 2H), 5.64 (AB-system, J = 16.3 Hz, 2H), 5.29 (s, 1H), 4.69 (s, 2H), 4.20–4.06 (m,
4H), 2.59 (s, 6H), 1.60–1.51 (m, 4H), 1.28–1.16 (m, 36H), 0.86 (t, J = 6.9 Hz, 6H). 13C NMR
(101 MHz, DMSO-d6) δ (ppm): 165.72, 159.72, 143.11, 142.82, 141.19, 135.82, 128.53, 128.20,
127.78, 126.99, 126.95, 126.90, 115.42, 65.27, 54.48, 48.16, 38.23, 31.31, 29.08, 29.02, 28.99,
28.73, 28.70, 27.94, 25.60, 22.10, 21.29, 13.94. IR νmax (film) 3030, 2954, 2922, 2854, 1695, 1640,
1594 cm−1. HRMS TOF ES+ of [C58H81N3O4-2H+H]+ (m/z) 882.6138; calcd: 882.6149. Anal.
calcd. for C58H81Br2N3O4: C, 66.72; H, 7.82; N, 4.02; found: C, 66.43; H, 7.69; N, 4.21.

1,1′-((1-Benzyl-3,5-bis((dodecyloxy)carbonyl)-4-phenyl-1,4-dihydropyridine-2,6-
diyl)bis(methylene))bis(4-(dimethylamino)pyridin-1-ium) 5c

Pale yellow solid, yield 75%, mp 158 ◦C (decomp.). Rf = 0.20 (sat. KNO3:H2O:Acetone,
1:4:80).

1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.11 (d, J = 7.8 Hz, 4H), 7.28–7.13 (m, 4H),
7.12–7.09 (m, 2H), 7.00 (t, J = 7.8 Hz, 2H), 6.91 (d, J = 7.8 Hz, 4H), 6.68 (d, J = 7.2 Hz, 2H), 5.98
(AB-system, J = 16.0 Hz, 2H), 5.27 (AB-system, J = 16.0 Hz, 2H) overlap, 5.26 (s, 1H) overlap,
4.68 (s, 2H), 4.20–4.08 (m, 4H), 3.18 (s, 12H), 1.61–1.52 (m, 4H), 1.28–1.16 (m, 36H), 0.87 (t,
J = 6.8 Hz 6H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 165.93, 155.83, 143.07, 142.53,
141.22, 135.99, 128.45, 128.13, 127.65, 126.89, 126.83, 126.75, 114.40, 107.85, 65.15, 51.36, 47.94,
39.85, 38.07, 31.30, 29.07, 29.01, 28.99, 28.72, 28.70, 27.97, 25.62, 22.10, 13.94. IR νmax (film)
3029, 2955, 2924, 2853, 1694, 1651, 1574 cm−1. HRMS TOF ES+ of [C60H87N5O4-2H+H]+

(m/z) 940.6695 calcd: 940.6680. Anal. calcd. for C60H87Br2N7O4: C, 65.38; H, 7.96; N, 6.35;
found: C, 65.02; H, 7.67; N, 6.50.

1,1′-((1-Benzyl-3,5-bis((dodecyloxy)carbonyl)-4-phenyl-1,4-dihydropyridine-2,6-
diyl)bis(methylene))bis(4-phenylpyridin-1-ium) 5d

Pale yellow solid, yield 53%, mp 180 ◦C (decomp.). Rf = 0.60 (sat. KNO3:H2O:Acetone,
1:4:80).

1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.98 (d, J = 6.8 Hz, 4H), 8.46 (d, J = 6.8 Hz,
4H), 7.92–7.86 (m, 4H), 7.66–7.60 (m, 2H), 7.52–7.46 (m, 4H), 7.31–7.17 (m, 6H), 7.04 (t,
J = 7.7 Hz, 2H), 6.76 (d, J = 7.2 Hz, 2H), 6.46 (AB-system, J = 16.3 Hz, 2H), 5.69 (AB-system,
J = 16.3 Hz, 2H), 5.32 (s, 1H), 4.73 (s, 2H), 4.24–4.11 (m, 4H), 1.60–1.52 (m, 4H), 1.27–1.12 (m,
36H), 0.85 (t, J = 6.8 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 165.84, 155.33, 144.29,
142.85, 140.59, 135.92, 132.89, 132.34, 129.52, 128.57, 128.17, 128.09, 127.78, 127.05, 127.01,
126.88, 124.51, 115.89, 65.39, 54.51, 48.13, 38.35, 31.30, 29.05, 29.00, 28.74, 28.71, 27.97, 25.68,
22.10, 13.95. IR νmax (film) 3032, 2952, 2924, 2854, 1694, 1639, 1597 cm−1. HRMS TOF ES+ of
[C68H85N3O4-2H+H]+ (m/z) 1006.6453; calcd: 1006.6462. Anal. calcd. for C68H85Br2N3O4:
C, 69.91; H, 7.33; N, 3.60; found: C, 69.65; H, 7.16; N, 3.87.

1,1′-((1-Benzyl-3,5-bis((dodecyloxy)carbonyl)-4-phenyl-1,4-dihydropyridine-2,6-
diyl)bis(methylene))bis(4-propylpyridin-1-ium) 5e

Pale yellow solid, yield 41%, mp 176 ◦C (decomp.). Rf = 0.50 (sat. KNO3:H2O:Acetone,
1:4:80).

1H NMR (400 MHz, DMSO-d6) δ (ppm): (d, J = 6.5 Hz, 4H), 7.97 (d, J = 6.5 Hz,
4H), 7.30–7.15 (m, 6H), 7.00 (t, J = 7.7 Hz, 2H), 6.70 (d, J = 6.8 Hz, 2H), 6.30 (AB-system,
J = 16.3 Hz, 2H), 5.66 (AB-system, J = 16.3 Hz, 2H), 5.29 (s, 1H), 4.76 (s, 2H), 4.18–4.06 (m,
4H), 2.87–2.77 (m, 4H), 1.71–1.60 (m, 4H), 1.57–1.49 (m, 4H), 1.25–1.18 (m, 36H), 0.93 (t,
J = 7.3 Hz, 6H), 0.85 (t, J = 6.8 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 165.68,
163.24, 143.32, 142.90, 140.80, 135.93, 128.51, 128.21, 127.77, 127.74, 127.03, 126.93, 126.77,
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115.49, 65.27, 54.65, 48.27, 38.23, 36.42, 31.31, 29.08, 29.02, 28.99, 28.73, 28.70, 27.92, 25.59,
22.74, 22.10, 13.94, 13.45. IR νmax (film) 3029, 2956, 2924, 2853, 1696, 1638, 1596 cm−1.
HRMS TOF ES+ of [C62H89N3O4-2H+H]+ (m/z) 938.6781; calcd: 938.6775. Anal. calcd. for
C62H89Br2N3O4: C, 67.68; H, 8.15; N, 3.82; found: C, 67.34; H, 7.96; N, 3.98.

2.3. Characterization of Monolayers Formed by 1,4-DHP Amphiphiles 5 or Surface Pressure–Area
(π–A) Isotherms

The surface pressure–molecular area (π–A) compression isotherms were measured
using a computer-controlled Langmuir trough (Medium trough, KSV NIMA Instruments,
Finland; Atotal = 243 cm−2) made of Teflon and equipped with two compression barriers
according to the previously described method [21]. Prior to the measurements, the trough
and barriers were thoroughly rinsed with ethanol and Milli-Q water. Briefly, the surface
pressure of the monolayer was monitored with a Wilhelmy plate made of platinum, which
was cleaned by being flushed with ethanol and Milli-Q water and burned by a Bunsen
burner. Samples for the studies were prepared by making stock solutions of the compounds
in CHCl3 at a concentration of 1 mg/mL and 0.125 mg/mL for compound 5a.

Cleanliness of the aqueous surface was ensured by sweeping the barriers across the
surface, and the aqueous surface was considered clean when π ≤ 0.2 mN/m. Monolay-
ers were formed by carefully spreading an appropriate volume of the lipid solution in
chloroform (20 µL, for compound 5e—10 µL) dropwise on the deionized water surface
at 25 ± 1 ◦C using a Hamilton micro-syringe. The carrying solvent (CHCl3) was allowed
to evaporate for 5 min before compressions began. The monolayers were compressed at
a constant rate of 10 mm/min. Measurements were made at 25 ± 1 ◦C and repeated at
least three times to ensure the reproducibility of the results. The experimentally detected
standard deviations of the molecular area and surface pressure did not exceed 5%.

2.4. Self-Assembling Properties of Compounds 5 Using Dynamic Light Scattering Measurements

Self-assembling properties of the tested compounds were estimated according to a
published procedure with minor modifications [17,25]. Briefly, samples for the DLS studies
were prepared by making stock solutions of compounds 5 in EtOH at a concentration of
0.4 mM. Stock solutions of the compounds (2.5 mL, 0.4 mM in EtOH 96%) were injected into
7.5 mL of deionized water with maximum stirring (IKA Vortex 2 (IKA, Staufen, Germany))
to give samples a final compound concentration of 0.1 mM.

The DLS measurements of the nanoparticles in the aqueous solution were carried
out on a Zetasizer Nano ZSP (Malvern Panalytical Ltd., Malvern, UK) instrument with
Malvern Instruments Ltd. Software 8.01.4906, using the following specifications—medium:
water; refractive index: 1.33; viscosity: 0.8872 cP; temperature: 25 ◦C; dielectric constant:
78.5; nanoparticles: liposomes; refractive index of materials: 1.60; detection angle: 173◦;
wavelength: 633 nm. Data were analyzed using the multimodal number distribution
software that was provided with the instrument. The measurements were performed in
triplicate to ensure their reproducibility.

2.5. Determination of Critical Aggregation Concentrations

Critical aggregation concentrations of the tested compounds were estimated according
to a published procedure with minor modifications [17]. The critical aggregation concentra-
tions (CAC) of 1,4-DHP amphiphile 1 and N-benzyl 1,4-DHP pyridinium dibromides 5 were
detected using a Zetasizer Nano S90 (Malvern Panalytical Ltd., Malvern, UK) instrument
with Malvern Instruments Ltd. The software procedure was described by Topel et al. and
modified by our group [17,26]. Briefly, stock solutions of the compounds (0.3 mL, 0.94 mM
in EtOH 96%) were injected into 0.7 mL of phosphate-buffered saline (PBS) (pH = 7.4)
with maximum stirring (IKA Vortex 2 (IKA, Staufen, Germany)) to give samples with a
final concentration of the compound of 0.282 mM. All of the subsequent samples were
prepared starting from this concentrated solution, which was subjected to a serial two-fold
dilution each time with PBS (pH = 7.4). The intensity values of scattered light (kcps) as a
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function of concentration of amphiphiles were analyzed. The scattering intensities detected
for amphiphile concentrations below CAC have an approximately constant value that
corresponds to water. The intensity starts to show a linear increase with concentration
at the CAC, since the number of nanoparticles increases in the solution. The intersec-
tion of the best-fit lines drawn through the data points is the preliminary CAC value of
the compounds.

2.6. Formation of Lipoplexes

The lipoplexes were prepared by placing 9 µL of 0.04 µg/uL mRNA solution into
2 mL sterile Eppendorf tube, followed by the addition of 6 µL of lipid solution in ethanol
with three different concentrations—0.92 mM, 1.84 mM, and 4.6 mM—to obtain N/P
charge ratios of 1, 2, and 5, following immediate mixing by working the pipette up-and-
down several times. The N/P charge ratio is nitrogen/phosphate ratio, which means that
cationic 1,4-DHP amphiphiles were mixed with mRNA at different charge proportions. The
obtained solutions were incubated for 15 min and 345 µL of Minimum Essential Medium
Eagle (MEM) were added to each formulation. Solutions were mixed by vortexing and
were incubated for 30 min before DLS measurements.

2.7. Statistical Analysis

Results were expressed as mean standard deviations (SDs). All of the experiments
were performed in triplicate.

3. Results and Discussion
3.1. Synthesis of N-Benzyl-1,4-dihydropyridines

The synthetic strategy for synthesis of the target products is depicted in Scheme 1.
The variations in the structure of original N-benzyl 1,4-DHP amphiphiles 5 were

performed in two directions: (1) by introducing the benzyl substituent at N atom of 1,4-
DHP cycle in order to evaluate the influence of N-substituent (comp. 1 versus comp. 5a);
(2) by variation of pyridinium substituents in order to study the influence of cationic head
groups on the properties of amphiphiles (comp. 5a versus comp. 5b–e).

Firstly, a parent N-benzyl 1,4-dihydropyridine 2 was synthesised by the condensation
of benzaldehyde, with two equivalents of dodecyl acetoacetate using phenylmethanamine
hydrochloride as a nitrogen source instead of ammonia and pyridine as a solvent, under
reflux for 30 h. Bromination of the 2,6-methyl groups of the N-benzyl 1,4-DHP 2 was per-
formed by N-bromosuccinimide (NBS), similarly to a previously described procedure [27].
A solution of NBS in methanol was added dropwise to a solution of 2,6-dimethyl-1,4-DHP
2 in methanol, the reaction mixture was stirred at r. t. for 24 h, and the completion of the re-
action was monitored by TLC. The desired N-benzyl substituted 2,6-bis(bromomethyl)-1,4-
DHP 3 was obtained with a yield of 74%. The last step—bromine nucleophilic substitution
with pyridine derivatives—was performed in acetone by stirring the reaction mixture at
the room temperature for 24 h. This step gave the target N-benzyl 1,4-DHP amphiphiles 5
with yields of 35–75% depending on the pyridinium substituent structure.

The structures of all compounds were established and confirmed on the base of
the 1H NMR (Figures S1, S4, S7, S10, S13, S16 and S19, Supplementary Materials), 13C
NMR (Figures S2, S5, S8, S11, S14, S17 and S20, Supplementary Materials), IR, HRMS
(Figures S3, S6, S9, S12, S15, S18 and S21, Supplementary Materials), and elemental analysis
data. 1H NMR spectra of all compounds showed characteristic signals for 1,4-DHP 4-H
protons as singlets at a range of 5.23–5.38 ppm and N-benzyl-CH2- signals as singlets
in the range of 4.68–5.12 ppm. Additionally, characteristic AB-system signals from the
2,6-methylene protons were observed for all N-benzyl 1,4-DHP pyridinium dibromides
5 in the 1H NMR spectra in the range of 5.27–5.79 and 5.98–6.39 ppm, while the same
protons for N-benzyl substituted 2,6-bis(bromomethyl)-1,4-DHP 3 were observed as two
broad singlets at 4.75 and 4.95 ppm. Characteristic signals of 4-H proton and AB-system
signals from the 2,6-methylene protons of 1,4-DHP derivatives are in agreement with the
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data for the previously published structurally related compounds. Thus, amphiphilic
1,4-DHP-anthracene hybrid signals of 1,4-DHP 4-H were observed at 5.15 ppm, and the
2,6-methylene group AB-system signals were observed at 5.89 and 6.39 ppm [25]. The 1H
NMR spectra of amphiphilic 1,4-DHP derivative having 4-(naphthalen-2-yl)-substituent at
position 4 and (E)-4-(2-(naphthalen-2-yl)vinyl)pyridinium substituents at positions 2 and 6
of 1,4-DHP cycle demonstrated signals at 6.50 ppm for 4-H proton and 4.67 and 5.44 ppm
for 2,6-methylene group protons [24].
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In the IR spectra, 1,4-DHP derivatives 2, 3, and 5 demonstrated characteristic ab-
sorption bands in the region of 3060–2850 cm−1 characteristic for long alkyl chains and
absorptions in 1720–1600 cm−1 of its C=O and C=C groups.

HRMS data of N-benzyl-1,4-DHP 2 and all cationic moieties containing 1,4-DHP
amphiphiles 5a–e showed mass signals which correspond to oxidized forms of the com-
pounds, while N-benzyl substituted 2,6-bis(bromomethyl)-1,4-DHP 3 mass signal confirms
1,4-DHP form.

The purities of the studied compounds 5a–e were at least 97% according to high-
performance liquid chromatography (HPLC) analysis.

3.2. Characterization of Monolayers

The properties of the monolayers composed of N-unsubstituted 1,4-DHP amphiphile
1 and N-benzyl-1,4-DHP derivatives 5 and their polar head areas were determined from
π–A isotherms obtained using the Langmuir–Blodgett trough (Figure S22, Supplementary
Materials) and were calculated according to the previously published procedures [21]. To
analyze the physical state of the monolayers, the values of compressibility modulus (Cs

−1)
were calculated from the isotherm data (Figure S23, Supplementary Materials). The surface
pressure (P) was defined as the surface pressure at Cs

−1
max. The mean molecular area

(MMA) of the compound of interest could be extracted from the π−A isotherm in the
liquid-condensed phase. The obtained values of the mentioned parameters are listed in
Table 1.

Table 1. Mechanical properties of the monolayers composed of 1,4-DHP amphiphiles 1 and 5 obtained
using the Langmuir–Blodgett trough, concentration of samples: 1 mg/mL; for comp. 5a—0.125 mg/mL;
subphase: deionized H2O. Cs

−1 (mN/m) is the maximum value of compressibility modulus; P (mN/m)
is the surface pressure of the monolayers at Cs

−1
max; MMA (Å2) is the mean molecular area.

Entry Comp. Cs−1, mN/m P, mN/m MMA, Å2

1 1 169.64 ± 2.05 24.61 ± 0.71 96.05 ± 4.69
2 5a * 211.94 ± 20.35 37.93 ± 1.44 138.11 ± 3.57
3 5b 154.67 ± 1.88 27.74 ± 0.63 132.58 ± 4.90
4 5c 201.03 ± 33.56 35.61 ± 1.22 131.15 ± 7.15
5 5d * 167.73 ± 0.42 36.05 ± 1.19 139.06 ± 1.94
6

5e #
146.16 ± 20.59 36.02 ± 0.54 191.26 ± 8.21
102.16 ± 25.46 44.05 ± 1.36
142.22 ± 7.45 54.94 ± 1.33

* 0.01 M KBr solution. # π−A isotherm with 3 zones.

As observed from the π−A isotherms, all the studied compounds were able to form
stable monolayers in an aqueous medium. The mean molecular area of the N-unsubstituted
1,4-DHP 1 was 96 Å2 (Table 1, entry 1). This was in agreement with the previously published
data, where the MMA value for 1,4-DHP 1 was indicated as 89 Å2 [25] or 83 Å2 [21].
After the introduction of N-benzyl substituent to 1,4-DHP molecules, the values of mean
molecular area increased from 132 to 139 Å2 (Table 1, entries 2–5) for compounds 5a–d,
which confirms that, in the mentioned cases, the substituents at pyridinium moieties
do not make significant contributions to change the mean molecular area value. The
MMA value for compound 5e enlarged twice, reaching the value of 191 Å2 (Table 1,
entry 6) and demonstrating the influence of the N-benzyl substituent and substituents
at pyridinium moieties. There are three clearly distinguished zones in the Langmuir
isotherm of compound 5e which are attributed to the structural characteristics—linear
propyl substituent at position 4 of pyridinium moieties, which decreases the hydrophilicity
of the polar head group. A similar isotherm with five zones was registered for dendrimers
and showed the influence of the hydrophilic/hydrophobic moiety ratio on surface phase
behavior [28]. According to the Cs

−1
max values and the literature data, all of the formed

monolayers collapsed in the liquid-condensed phase [29].
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There are three clearly distinguished zones in the Langmuir isotherm of compound 5e
which are related to the structural characteristics. The linear propyl substituent at position
4 of pyridinium moieties decreases the hydrophilicity of the polar head group.

3.3. Self-Assembling Properties

Self-assembling properties are a characteristic feature of synthetic lipid-like com-
pounds, including 1,4-DHPs, which contain cationic moieties. The average hydrodynamic
diameters (Zav), polydispersity index (PDI), zeta-potential (Zpot), critical aggregation con-
centrations (CAC), and stability of nanoparticles formed by N-benzyl-1,4-DHP amphiphiles
5 in aqueous medium were determined by the DLS method. Nanoparticles were prepared
by the ethanol injection method, which involved the dissolution of the lipid-like compound
into organic solvent followed by dispersion of the lipid solution into water. This method
is rapid and easily scalable [30]. Nanoparticles were prepared from cationic moieties con-
taining N-benzyl-1,4-DHP amphiphiles 5. Parent 1,4-DHP derivatives 2 and 3, which were
used for the preparation of derivatives 5, do not form nanoparticles by themselves. The
same relationships were observed previously for N-unsubstituted ones [17].

The data concerning zeta-potential (Zpot) and CAC are summarized in Table 2.

Table 2. Values of the zeta-potentials (Zpot) and critical aggregation concentration (CAC) of nanopar-
ticles formed by 1,4-DHP amphiphiles 1 and 5 in an aqueous solution obtained by DLS measurements.
The Zpot value gives information about the surface charge of the nanoparticles and the CAC value
characterizes the concentration above which vesicles are formed.

Entry Value Comp. 1 Comp. 5a Comp. 5b Comp. 5c Comp. 5d Comp. 5e

1 Zpot, mV 75.4 ± 7.5 40.6 ± 0.9 89.0 ± 1.1 56.8 ± 0.4 35.7 ± 2.5 90.9 ± 9.1
2 CAC, µM 1.06 0.46 1.16 0.01 0.95 2.65

The obtained data indicated that the surface charges of nanoparticles formed by
tested amphiphiles were strongly positive. Surface charge of lipid nanoparticles is usually
determined by the lipid head groups. The surface potential of nanoparticles determines the
strength of intra-particle interactions, the adsorption of counter ions, and particle stability.
Zeta-potential values over 30 mV usually indicate that the formed nanoparticle solutions
are relatively stable [31,32]. The Zpot value of compound 1—around 75 mV (Table 2, entry
1)—is in agreement with our previous measurements when the zeta-potential value of
compound 1 was indicated as 82 mV [17] or 90 mV [19]. Zpot values of N-benzyl 1,4-DHP
derivatives 5b and 5e are relatively close—89 and 91 mV, respectively. Zpot values of other
N-benzyl 1,4-DHP derivatives 5a, 5c, and 5d are lower, in the range 40, 57, and 36 mV,
respectively (Table 2, entry 1).

For self-assembling compounds, the concentration above which vesicles, micelles, and
other nanoparticles are formed is described as the critical micelle concentration (CMC),
which is an important parameter for the characterization of the compounds of this type [33].
The point where amphiphiles assemble in larger spherical aggregates is CMC, while the
concentration of premicellar aggregates formation is critical aggregation concentration
(CAC). Compared to the monomeric analogues, gemini surfactants show more diverse
aggregate morphologies [34]. Therefore, the term CAC was used for the characterization of
a critical concentration of 1,4-DHP amphiphiles 1 and 5. According to Felice et al. [35] for
the conventional amphiphiles, CMC is usually in the range of 10−2–10−4 M. Alternatively,
for phospholipids, CMC is four to five times smaller, which indicates that these materials
have rather low solubility in water. Because of this, phospholipids have higher stability
after administration when compared to micelles. CAC values of 1,4-DHP amphiphiles 1
and 5 were in the range of 0.01–2.65 µM (Table 2, entry 2). The CAC value of 1,4-DHP
amphiphile 1 was 1.06 µM, while the previously determined CAC values were 30 µM [17]
or 17 µM [19]. This variance could be explained by the different sample preparation
methodology. Previously, nanoparticles were prepared by thin film hydration method in
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aqueous media, while this time the ethanol injection method was used. With this method,
the nanoparticle media contains a residual amount of ethanol additive. CAC values of
N-benzyl 1,4-DHPs 5b and 5d are in the same range—1.16 µM and 0.95 µM. CAC values of
other N-benzyl 1,4-DHPs are 2.65 µM for comp. 5d, 0.46 µM for comp. 5a, and 0.01 µM for
comp. 5c.

3.3.1. Characterization of Size of Liposomes

The average hydrodynamic diameters (ZavDH), polydispersity index (PDI), and stabil-
ity of nanoparticles comprised of amphiphilic 1,4-DHP 1 and 5 were determined by the
DLS method. The results for the freshly prepared samples and samples after storage at
4 ◦C for a month at concentration 0.1 mM are summarized in Figure 2 (data from Table S1,
Supplementary Materials).
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Figure 2. Values of Z-average (ZavDH) diameter and polydispersity index (PDI) of nanoparticles
formed by 1,4-DHP amphiphiles 1 and 5 at the 0.1 mM concentration obtained by DLS measurements
for the freshly prepared samples and samples after one month storage at 4 ◦C. Error bars smaller than
data point size are not visible.

The average diameter of nanoparticles formed by N-benzyl 1,4-DHP derivatives 5 in
an aqueous medium ranged from 395 to 2570 nm for the freshly prepared samples and
from 346 to 1195 nm after one month of storage (Figure 2). The structure of the compounds,
including the substituent of pyridinium moieties, influenced the values of nanoparticles’
average diameter. Thus, in the case of bulky phenyl substituent for compound 5d, the
average diameter of nanoparticles was 2570 nm, and the PDI value of 0.680 confirmed
the heterogeneity of the sample. After one month of storage the diameter of particles
decreased twice (to 1195 nm), but the PDI value increased to 0.731. Nanoparticles formed
by N-unsubstituted 1,4-DHP derivative 1 were with an average diameter of 395 nm for the
freshly prepared samples and 346 nm after storage, and PDI values were 0.342 and 0.305, re-
spectively. Similar observations could be made for compound 5b with 4-methylpyridinium
substituents—it formed nanoparticles with the average diameter of 529 nm for the freshly
prepared samples and 430 nm after storage. PDI values were 0.521 and 0.443, respectively.
Nanoparticles of compound 5c with 4-dimethylaminopyridinium substituents possessed
an average diameter of 714 nm for the freshly prepared samples and increased to 458 nm
after storage, with PDI values of 0.414 and 0.445, respectively. The mentioned values of
PDI confirmed that the sample possesses average homogeneity. In the case of compound
5a, the freshly prepared sample was more homogenous with a PDI value of 0.116, while
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the average diameter of nanoparticles was 781 nm. After the storage, the average diameter
of nanoparticles increased to 873 nm, but the PDI value increased to 0.391. Nanoparticles
of compound 5e with 4-propylpyridinium substituents possessed an average diameter of
462 nm for the freshly prepared samples and decreased to 1003 nm after storage. In both
cases samples were homogenous, which was confirmed by PDI values of 0.251 and 0.163,
respectively.

The two-fold increase of particle size for comp. 5e could be explained by the aggre-
gation of particles or Ostwald ripening. A similar phenomena was also observed and
described by other research groups [36,37]. It was demonstrated that the parameters of
lipoplexes formed by 1,4-DHP amphiphiles 1, 5a,b did not differ much after one month
storage at 4 ◦C. These data show that the samples were stable during 1 month of storage.

The ability to form nanoparticles by the amphiphilic 1,4-DHP is highly influenced
by the substituents of its ring, which can be observed in our previous studies for the
structurally related compounds. Thus, particles formed by 1,4-DHP amphiphile 1 had an
average diameter of 110 nm and a PDI value of 0.345 [17], and particles formed by 1,1′-{[3,5-
bis(dodecyloxycarbonyl)-4-(naphthalen-2-yl)-1,4-dihydropyridine-2,6-diyl]bis(methylene)}
bis{4-[(E)-2-(naphthalen-2-yl)vinyl]pyridin-1-ium} dibromide had an average diameter of
approximately 300 nm and a PDI value of 0.491 for the freshly prepared sample [24].
According to the literature, the size and homogeneity of samples also depend on the prepa-
ration method. It is underlined that, using the ethanol injection method, the concentration
of ethanol should not exceed 7.5% in order to prevent liposome destabilization [38,39]. The
other main drawback of ethanol injection method is connected with the final formation of a
heterogeneous population of liposomes [40].

3.3.2. Characterization of Lipoplexes

The lipoplexes were prepared by injecting an ethanol solution of 1,4-DHP amphiphiles
1 and 5 into a solution containing a constant amount of mRNA at different N/P (nitro-
gen/phosphate) charge ratios. After the incubation, a constant amount of MEM was added
to each sample of lipoplexes, followed by vortexing and incubation for 30 min prior to
DLS measurements. The obtained data are summarized in Figure 3 (data from Table S2,
Supplementary Materials). These measurements were performed for comparison of the
sizes of empty liposomes and lipoplexes formed by lipids and mRNA.
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Figure 3. Values of Z-average (ZavDH) diameter and polydispersity index (PDI) of lipoplexes formed
by 1,4-DHP amphiphiles 1 and 5 and mRNA at N/P charge ratios of 1, 2, and 5 obtained by DLS
measurements. Error bars smaller than data point size are not visible.



Materials 2023, 16, 4206 13 of 16

The obtained data (Figure 3) demonstrate that the average diameters of lipoplexes
formed by compounds 5d and 5e at all the tested N/P ratios were above 1200 nm. Thus, in
the case of compound 5d at N/P ratio 1, the average diameter was almost 3000 nm. PDI
values of for lipoplexes of compounds 5d and 5e at N/P ratio of 1 were around 1, while
at a N/P ratio of 2, PDI values were 0.373 and 0.439 and at N/P ratio of 5–0.318 or 0.653,
respectively. The average diameter of lipoplexes formed by compounds 5a and 5c at N/P
ratios of 1 and 2 were around 1000 nm with PDI values in the range of 0.357–0.514, but
at a N/P ratio of 5, the average diameter of lipoplexes decreased to 143 and 139 nm with
PDI values of 0.295 and 0.215, respectively. The average diameter of lipoplexes formed by
compounds 1 and 5b at N/P ratio of 1 were around 800 nm with PDI values of 0.246 and
0.349, a N/P ratio of 2–582 nm and 386 nm, and PDI values of 0.127 and 0.420, but a N/P
ratio of 5–298 nm and 148 nm with PDI values of 0.266 and 0.179. This is in agreement
with our previous observations—that the mean diameters of the complexes of structurally
related 1,4-DHP amphiphiles with DNA at high N/P (4) are rather small (around 150 nm),
while decreasing the N/P charge ratio increases the size of lipoplexes 10–35-fold [16].

The comparison of empty liposome parameters with lipolpexe parameters demon-
strated that the size of lipoplexes at N/P ratios of 1 (Table S1, column 3 versus Table S2,
column 3) slightly increased for comp. 5d, 1.5 times for comp. 5a–c, 2 times for comp. 1,
and 3 times for comp. 5e. The size of lipoplexes at N/P ratios of 2 (Table S1, column 3
versus Table S2, column 5) decreased 1.4 and 1.7 times for comp. 5c and 5d, respectively,
and increased 1.4–1.7 times for comp. 5c, 1 and 5a, as well as 2.5 times for comp. 5e.
The size of lipoplexes at N/P ratios of 5 (Table S1, column 3 versus Table S2, column 7)
decreased 5 and 5.5 times for comp. 5c and 5a, respectively, 3.6 times for comp. 5b, and 1.3
and 1.7 times for comp. 1 and 5d, respectively, and increased 2.6 times for comp. 5e.

During the determination of the size of liposome complexes formed by compounds
with RNA at low N/P charge ratios, we observed larger particles and higher PDI values.
We explain this by the fact that in order to compensate for all the negative charges on the
RNA molecule with the charge of cations in the lipid molecule, the lipid molecules are
oriented with the cation towards the RNA. Therefore, when such a complex is formed,
its surface becomes hydrophobic, and the aggregation of these complexes occurs in the
water media.

Our previous data demonstrated that the cytotoxicity of various N-unsubstituted
1,4-DHP amphiphile–pDNA complexes were in the same range as those determined for
PEI 25 and DOTAP complexes at low N/P ratios (1 and 2), as more than 80% of the
cells were found to be viable. At a N/P ratio of 4, most of the complexes became more
cytotoxic. Cytotoxicity was further increased at a charge ratio of 8 [17]. Additionally, it
was demonstrated that the transfection ability and cytotoxicity of 1,4-DHP amphiphiles
was dependent on the compound structure, and showed different effects on the tested cell
lines [20].

Taking the high similarity of the structures of compounds and cytotoxicity data from
previous studies, parameters of formed nanoparticles and an analysis of results allow us to
assume that lipoplexes formed by 1,4-DHP amphiphiles 1 and 5a–c at N/P charge ratio of
5 meet the requirements of prospective carrier system parameters.

4. Conclusions

Novel N-benzyl 1,4-DHP amphiphiles as prospective delivery systems were success-
fully obtained and characterized. The variations in the structure of the original N-benzyl
1,4-DHP amphiphiles 5 were performed by the introduction of the benzyl substituent at N
atom of 1,4-DHP cycle and by the variation of pyridinium substituents of 1,4-DHP cycle.
Studies of monolayers composed of 1,4-DHP amphiphiles revealed that the mean molecular
areas of the compounds extracted from the π−A isotherms and demonstrated that MMA
values depend on the amphiphile structure. The introduction of N-benzyl substituent at
the position 1 of 1,4-DHP ring enlarged the mean molecular area by almost half. All the
formed monolayers collapsed in the liquid-condensed phase.
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Nanoparticles obtained by the ethanol injection method possessed positive surface
charge with an average diameter of 395–2570 nm for the freshly prepared samples and
346–1195 nm for the samples after one month of storage at 4 ◦C. Liposomes formed by
1,4-DHP amphiphiles 1, 5a,b were stable after 1 month of storage. It was confirmed that
the structure of the cationic head-group affects the size of the formed nanoparticles. Thus,
N-benzyl substitution at the 1,4-DHP cycle, in combination with the substituents at the
pyridinium moieties, has a negative impact on the nanoparticle homogeneity and stability
during storage. The diameters of lipoplexes formed by 1,4-DHP amphiphiles and mRNA
at N/P charge ratios of 1, 2, and 5 were in the range of 139–2959 nm and were related to
the structure of compounds and the N/P charge ratio. The preliminary results suggest
that the lipoplexes formed by mRNA and 1,4-DHP amphiphiles 1 and 5a–c at N/P charge
ratio 5 are prospective. The results of this study suggest that 1,4-DHP amphiphiles 1 and
5a–c have favorable properties for potential applications in nanomedicine as DNA or RNA
delivery agents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16124206/s1. The following supporting information is available
online: 1H NMR, 13C NMR and HRMS spectra of compounds 2, 3 and 5a–e (1H NMR (Figures S1, S4,
S7, S10, S13, S16 and S19), 13C NMR (Figures S2, S5, S8, S11, S14, S17 and S20) and HRMS spectra
(Figures S3, S6, S9, S12, S15, S18 and S21) of compounds 2, 3 and 5a–e, surface pressure—mean
molecular area isotherms of 1,4-DHP amphiphiles 1 and 5 (Figure S22) and compressibility modulus-
surface pressure dependences graphs of 1,4-DHP amphiphiles 1 and 5 (Figure S23). Table S1 with
DLS data for nanoparticles obtained from 1,4-DHP amphiphiles 1 and 5 and Table S2 with DLS data
for lipolexes formed by nanoparticles from 1,4-DHP amphiphiles 1 and 5 nanoparticles and mRNA.
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