
Citation: Erenpreisa, J.;

Vainshelbaum, N.M.; Lazovska, M.;

Karklins, R.; Salmina, K.; Zayakin, P.;

Rumnieks, F.; Inashkina, I.;

Pjanova, D.; Erenpreiss, J. The Price

of Human Evolution: Cancer-Testis

Antigens, the Decline in Male Fertility

and the Increase in Cancer. Int. J. Mol.

Sci. 2023, 24, 11660. https://doi.org/

10.3390/ijms241411660

Academic Editors: Peter J.K. Kuppen,

Carmine Stolfi and Massimo Nabissi

Received: 8 June 2023

Revised: 15 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Price of Human Evolution: Cancer-Testis Antigens, the
Decline in Male Fertility and the Increase in Cancer
Jekaterina Erenpreisa 1,* , Ninel Miriam Vainshelbaum 1, Marija Lazovska 2 , Roberts Karklins 2 ,
Kristine Salmina 1, Pawel Zayakin 1 , Felikss Rumnieks 1, Inna Inashkina 1, Dace Pjanova 1,2

and Juris Erenpreiss 2,3

1 Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia;
ninela.vainselbauma@biomed.lu.lv (N.M.V.); salmina.kristine@gmail.com (K.S.); pawel@biomed.lu.lv (P.Z.);
felikss.rumnieks@biomed.lu.lv (F.R.); inna@biomed.lu.lv (I.I.); dace@biomed.lu.lv (D.P.)

2 Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia;
marija.lazovska@inbox.lv (M.L.); robertskarklins10@gmail.com (R.K.); jerenpreiss@gmail.com (J.E.)

3 Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
* Correspondence: katrina@biomed.lu.lv

Abstract: The increasing frequency of general and particularly male cancer coupled with the reduction
in male fertility seen worldwide motivated us to seek a potential evolutionary link between these
two phenomena, concerning the reproductive transcriptional modules observed in cancer and the
expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome
allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the
unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and
the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-
families, very late during their evolution. CTA adaptation was aided by retrovirus domestication
in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly
that of humans, as compensation for the energy consumption of a large complex brain which also
exploited retrotransposition. We found that the early and late evolutionary branches of human cancer
are united by the immunity-proto-placental network, which evolved in the Cambrian and shares
stress regulators with the finely-tuned sex determination system. We further propose that social
stress and endocrine disruption caused by environmental pollution with organic materials, which
alter sex determination in male foetuses and further spermatogenesis in adults, bias the development
of PGCC-parthenogenetic cancer by default.

Keywords: cancer-testis antigens; parthenogenetic; polyploid giant cancer cells; PGCCs; genome
fragility; phylostratigraphic analysis; innate immunity placentation; endogenous retroviruses; sex
determination; male infertility; endocrine disruption; environmental pollution

1. Introduction

The increasing worldwide risk of cancer, which is particularly high in European
countries and the US (e.g., in the UK, it is currently estimated to be over 50% [1]) and
currently rising in younger adults [2], is alarming. Furthermore, men are more likely
to both develop and die from malignant tumours [3]. Male fertility was also shown to
be continually decreasing over the last 80 years of monitoring worldwide [4]. Are both
tendencies causally linked? Cancer-testis-associated (CTA) protein-coding genes (expressed
nearly selectively in the normal testis), which originated with the development of mammals
and expanded in placentals and hominids, turned out to be oncogenic drivers, responsible
for the poor prognosis in cancer patients of many solid tumour types [5–7]. In this review,
we attempt to analyse this fatal link’s evolutionary root and contemporary drive.

In our previous phylostratigraphy analysis of the human genome embracing the
entire ~4-billion-year-long evolutionary timeline of life on Earth, by investigating the list of
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1474 gametogenic (germ cell, meiotic, and CTA origin) genes, or GG, we revealed several
peaks of evolutionary reproductive attractors [8] (Figure 1A). Beside the peaks in unicellulars
(UC) (Strata 1 + 2) and early multicellulars (MC) (strata 4 + 5), and the peak in Stratum 8 (the
Cambrian explosion of animal variety), we paid attention to two splashes of late GG that had
evolved in Eutherians and Old World monkeys (strata 12–14). Those mainly included the CTA
group of late origin [8]. With the origin of the X-chromosome, dated about 170 million years
ago (Mya), the CTA genes which initially evolved in the mammalian autosomes, transited
their exponentially expanding families onto the X-chromosome (Figure 1B). The evolution of
X-linked CTAs was further hastened and is likely still going on in humans [9].
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Figure 1. (A) The phylostratigraphic distribution of all available gametogenesis (GG) genes with
phylostratigraphy information, with the distribution of all genes used as background. The two
late splashes of CTA genes are marked by arrows. (B) Exponential transition from the autosomes
and expansion of CTA genes to X- chromosome occurred ~170 Mya together with the origin of the
X-chromosome, starting primate evolution. Adapted (A) from Ref. [8] under CC BY 4.0 licence, 2022
MDPI and reprinted (B) from Ref. [9], with permission from Zhang, Y.E. and Long, M, Curr. Opin.
Genet. Dev.; published by Elsevier, 2014.

The following questions arise: (1) Why did these testis-associated genes evolve in
hominids so late when sexual reproduction was already established? (2) And why are they
associated with cancer? As the main X-located CT-MAGE genes code for antigenic proteins,
this feature also needs an explanation of its link to fertility and cancer.

According to the popular evolutionary theory of cancer based on the phylostrati-
graphic data of cancer patient transcriptome databases, as well as that of driver oncogenes,
the origin of cancer is dated very early, to the transition between UC and early MC organ-
isms, (~2–1 billion years ago (Bya)) [10–17] creating in human cancers the rewired UC-MC
gene regulatory network (GRN) [18], though it is considered a stepwise process [17,19].
Moreover, the genome rewiring in cancer, particularly in association with polyploidy
and c-myc-related activation of bivalent developmental genes, was found to facilitate the
coordinated expression of reproduction genes and proteins and favour the female mei-
otic pathway in solid TCGA (The Cancer Genome Atlas) tumours [8,16,20,21], which is
potentially parthenogenetic, also in males [22]. Bruggeman et al. [23], who observed a
massive expression of germ-cell-specific genes in cancer, came to the conclusion that it is a
cancer hallmark; moreover, they showed, using TCGA lung adenocarcinoma as an example,
that a higher germ cell gene expression signature was associated with poorer survival
of the patients. All these data provide support for the old embryonal/parthenogenetic
cancer theory [24–26]. In its current variant, the embryonal theory of cancer considers
polyploid giant cancer cells (PGCCs) in somatic tumours to be exploiting a program of
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early embryogenesis [27,28] and sexually undetermined primordial germ cells [24–26]. For
the historical arrow diagram describing advancements in cancer polyploidy research (in-
cluding embryogenesis-like feature identification) from the 19th century onwards, see [29].
In the study of GG genes of 29 TCGA tumour types, we found that polyploidy enriches
17 tumour types with GG genes, while 10 of those tumour types have CTA/MAGE group
members among their top 25 upregulated GG genes [8]. In further support, the microscopic
observations from various laboratories during the two last decades have shown PGCCs,
which are more numerous in genotoxically challenged cancers, to be similar to an early
embryo (typically reaching the 8–16 cell (32C) stage), exhibiting meiotic and embryonal
pluripotency markers [8,27,28,30–34] and being able to initiate tumours upon xenotrans-
plantation of a single PGCC [35]. At the same time, PGCCs are capable of releasing their
cellularised mobile offspring via asymmetric division, budding, or bursting. This process,
termed ‘neosis’ [36], has the mixed features of multicellular embryogenesis and unicellular
amoebal sporogenesis, and, not infrequently, literally recapitulates the latter in the process
of developing drug resistance [12,37–39]. Some typical images of this process are compiled
in Figure 2, with a Volvox 8-cell-bridged embryo image enclosed for comparison.
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before fixation, two subsequent midbodies of asymmetric reduction divisions are arrowed. (B) 

Figure 2. The similarity of PGCCs to early embryos, also showing asymmetric divisions and
sporogenic-like processes; immunofluorescent staining or scanning EM in cell cultures: (A) The
Namalwa Burkitt lymphoma cell line (44, X0), day 5 after 10Gy hit, treated with lactacystin 2 hrs
before fixation, two subsequent midbodies of asymmetric reduction divisions are arrowed. (B) Lym-
phoblastoma WIL2NS (47, XY), 10 Gy—D5, the four-cell blastula-like PCGC is highlighted. (C) HEY
ovarian carcinoma (82, XX) after paclitaxel treatment, mimicking cleavage blastula. (D,E) SK-MEL-28
melanoma (~90 XX,-Y) targeted treatment, D15. (F) Volvox 8-cell embryo, blastomeres united via
cytoplasmic bridges. (G) Namalwa, 10 Gy—D13, the budding cellularised subnucleus is arrowed.
(H) Breast cancer MDA-MB-231 (~64, XX) Doxorubicin—D13, the two different subnuclei of a giant
amoeboid cell, one of which is spore-like, cellularised and mobile (actin/tubulin rich), are marked
by yellow arrows. (I) Breast cancer MCF7 (69, XX), untreated, the budding cellularised subnucleus
of a giant cell in the process of mitosis is arrowed. Reprinted (A,B) from Ref. [27], with permission
from Erenpreisa, Je. et all., Oncoscience; published by Impact Journals LLC, 2015; (C) from Ref. [28],
CC BY 4.0 licence; (F) from Ref. [40], with permission from Green, K.J. and Kirk, D.L., J. Cell Biol.;
published by Rockefeller University Press, 1981; (H) from Ref. [20], CC BY 4.0 licence.
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However, a STRING PPI network analysis of gametogenetic (GG) genes in breast and
many other common cancers from the TCGA database reveals that the giant component of
the network, enriched for meiotic modules (including those of female meiosis/oogenesis), is
bridged to the subnetwork of the CTA/MAGE group by the nuclear receptor transcriptional
regulator PRAME antigen (Figure 3A). In Figure 3B, the GG phylostratigraphy distribution
for polyploid BRCA samples, including expression of the evolutionarily late genes, is
presented as a typical example for many common cancers [8].
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Figure 3. Gametogenesis profiles of TCGA breast carcinoma: (A) The STRING network of polyploidy-
upregulated genes in TCGA breast carcinoma (BRCA), showing the presence of GG genes and enrich-
ment of female-meiosis-related modules in the giant component with the MAGE/CTA subnetwork
attached by the PRAME gene (arrow); (B) The phylostratigraphic distribution of ploidy-upregulated
GG genes in TCGA-BRCA. Adapted (A,B) from Ref. [8], CC BY 4.0 licence.

Here, we tried to find the answers to the questions relating to CTA genes we formulated
above, using data from the literature and also performing further in silico functional
analyses of separate phylostratigraphy layers of the GG gene modules.

But first, we should start with a brief insight into the evolution of the human genome
and CTA genes.

2. Evolution of the Human Genome via Segmental Duplications, Adaptation via
Transposition and Fragility, CTA Origin, Reactivation of the X-Chromosome in
Spermatogenesis, and X-Doubling in Male Cancer

Our human lineage started ~3.9 Bya with the origin of life through eubacteria, devel-
oped through multicellular eukaryotes, which underwent two rounds of whole-genome
doubling at the base of vertebrate origin before the Cambrian explosion of the animal vari-
ety, at the second atmospheric oxygenation ~500 Mya; mammals originated ~250–200 Mya,
primates ~90–57 Mya [19]. Compared to other mammals, the genomes of primates and
particularly humans are enriched with large, interspersed segmental duplications (SDs),
repeated in two or more genomic locations, with high levels of sequence identity. A strong
association between SDs, genomic instability, and large-scale chromosomal rearrangements
has been shown. The findings suggest that SDs have not only created novel primate gene
families, but might have also influenced current human genetic and phenotypic variation
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on a previously unappreciated scale [41]. In total, 45% of the human genome is composed
of transposable elements (TE): non-LTR (long terminal repeats) retrotransposons, short
and long interspersed nuclear elements (SINE and LINE, correspondingly), LTR retrotrans-
posons (endogenous retroviruses), and DNA transposons; TE are mostly epigenetically
silenced [42]. Detailed analyses of the sequences of pairwise SD alignments have revealed
that Alu, the most abundant RT class of mobile elements, is significantly enriched at the
boundaries of SD pairs and restricted to younger subfamilies (AluY and AluS). The pair-
wise SD boundaries were shown to be fragile and the preferential sites of double-strand
breakage. The fragile human genome sites assume a left-handed zigzag-like Z-DNA form of
high energy tension and represent the sites of the high mutation and deletion rates [41,43].
Thus, SD and Alu’s repeats appear as the main origin of genome instability in primates
and humans [41,44]. An updated analysis of the common fragile sites indicates their ac-
tivation to be associated with replication stress and heterochromatin under-replication,
which correlate well with chromosomal rearrangement and copy number variation and
are likely causally linked to carcinogenesis [45,46]. Notably, the genome fragile sites are
attractive for the meiotic recombination endonuclease SPO11 [47]. Vertically inherited
endogenous ERV viruses possessing long terminal repeats (LTR) have also contributed
to CTA evolution by producing tissue-specific variants (testis, brain, placenta), creating
alternative gene promoters [48].

The evolution of CTAs in humans is tightly associated with the newest RT history,
on the one hand, and the phylogenetic and ontogenetic history of the sex chromosome
X, where the largest part of CTAs are located, on the other hand. The X-chromosome is
enriched 2-fold for the autonomous RT LINE-1 (L1) that may also serve as DNA signals to
propagate X-chromosome inactivation (through lncRNA) along the chromosome [49] while
transposing via their smaller active fraction of the Alu-elements. The restricted subset of
L-1 elements underwent an Eutherian burst [50] which could favour the Eutherian splash
of CTA genes. Alu introduced the primate genomes to more than one million elements
60–35 Mya [50,51]. As shown in Figure 1B, CTA genes transited to and exponentially
expanded on the X-chromosome. Given the high level of diversifying selection, it was
suggested that CTA genes are primarily responsible for the observed rapid evolution
of protein-coding genes on the X-chromosome [9] that involves the ongoing evolution
of Alu repeats [52]. There are also the transcription-binding sites found within the Alu
sequences, including the nuclear transcription factor family, in particular, steroid hormone
receptors, progesterone and androgen receptors (PR and AR, correspondingly) [53]; they
are associated with somatic sex-determination-regulating spermatogenesis, folliculogenesis,
and placentation.

The early human embryo undergoes full genome activation at the 8-cell stage; the
later-formed primordial germ cells (PGCs) maintain the paternally and maternally inherited
imprinting patterns. This DNA methylation pattern is again rapidly erased when PGCs
begin migrating towards the developing gonads and undergo reprogramming, starting
the transition from mitotic to meiotic division during spermatogenesis [54]. Many CT
genes located on the X-chromosome are involved in this reprogramming (see below).
LINE-1 activation is essential for preimplantation development [55], they are expressed
in round spermatids [56], and also the DNAse-hypersensitive nucleo-histone fraction of
the mouse and human sperm is enriched in retrotransposon DNA [57,58]. The Xq26-28
fragile site, a region on the X-chromosome prone to breakage, has been linked to LINE-1
retrotransposition [59]. This region, particularly Xq27.3, includes the MAGE-A family of
CTA genes, the youngest and the only transposing Ta subfamily of L1 amplified in the last
2 million years [60]. Non-autonomous Alu, which alters DNA methylation [61] and the
autonomous, only human, transposing L1 subfamily, which generally favours methylation,
is often clustered together in the fragile sites [62]. It remains to be mentioned that CTA
genes are hyperactivated in cancers via demethylation [63].

From the above, it can be seen that the complex regulation of male CTA gene expression
on the X-chromosome is RT-linked, associated with fragility, and also highly dependent on
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the DNA secondary structure and epigenetic modifications. The latter, as well as X-gene
dosage, also depend on X-chromosome ontogeny, which is different for males (XY) and
females (XX).

In the female karyotype, one of two X-chromosomes is inactivated (XCI). XCI in
placental mammals is a dosage compensation mechanism that transcriptionally silences
the majority of genes on one of the X-chromosomes in females. Because males have a
single X-chromosome, this ensures dosage equivalence between males and females. Male
cells reactivate their only X-chromosome during spermatogenesis [64]. Recent reports
have shown that reactivation of the inactive X-chromosome, or a loss of the inactive and
doubling of the active X-chromosome [65], a unique phenomenon that exists in many
high-risk tumours in women, can transform the expression of many X-linked genes from
monoallelic to biallelic. Therefore, Liu et al., (2018) [66] speculated that X-chromosome
reactivation can inappropriately augment CTA expression in cancer. Therefore, it is highly
interesting that our studies also revealed a high proportion of male tumour types with
extra X-chromosome acquisition in the Mitelman tumour karyotype database, which thus
presumably doubles the gene dosage of X-linked CTA genes [22]. Moreover, the studies on
male breast cancers with an extra X-chromosome revealed the hypomethylation of the AR
gene together with the CTA MAGEA family members, the coregulators of AR, both mapped
on the X-chromosome’s q-arm [67]. The authors suggested that this cis-hypomethylation
may lead to CTA and AR hyperactivation. Moreover, Talon et al. [64] proposed that
genes encoded on the sex chromosomes act on autosomal genes to generate a differential
regulatory and epigenetic landscape upon which later factors, such as hormones, act to
counter or compound sex biases.

As suggested [68], and is generally accepted [69], CTAs emerged in evolution to protect
male reproduction in mammals and particularly hominids (who possess large brains) from
stress. The useful information on the functions of the most important CTAs/MAGE
members related to stress is briefly compiled below.

3. The MAGE Protein Oncogene Family Functions in Gametogenesis and the Adaptive
Stress Response

MAGEs (melanoma-associated genes, first found in melanoma) represent the most
important group of CTA genes associated with cancer. MAGE genes are conserved in
all eukaryotes and have expanded from a single gene in lower eukaryotes to ~40 genes
in humans and mice. The type I MAGEs include the MAGE-A, -B, primate-specific-C,
and mouse-specific Mage-a–like subfamily members. Type I MAGEs are called cancer-
testis antigens (CTAs) because they are primarily expressed in the testis but are normally
silent in other tissues; however, they are often aberrantly reactivated during oncogenic
transformation and code for antigens recognized by cytotoxic T lymphocytes, and they are
also involved in diseases other than cancer, including neurological disorders [70]. They are
mostly located on the X-chromosome.

In contrast, the type II MAGEs, consisting of the MAGE-D, -E, -F, -G, -H, -L, and
NECDIN genes, are more ubiquitously expressed in humans, particularly in the brain.
They are typically not associated with human cancer and can be located on autosomes.
In Figure 4A, the MAGE group I and II genes mapping on a human X-chromosome are
shown. Notably, MAGE-A and -C subfamilies, most associated with cancer, are nested in
the syntenic regions of the X-chromosome, the fragile locus Xq27.3 and locus Xq28, where
the testis-associated genes are overrepresented. Some MAGE-B genes from the X-short
arm are also involved in cancer. Figure 4B, also borrowed from the review [70], shows
a heatmap of the percentage of various tumours that express each type of MAGE. It is
interesting to compare it with the Table in Figure 4C, which showcases the male tumour
karyotype cohorts showing the highest percentage of extra X-chromosome gain, presented
by the same tumour types, with the upper row being seminoma in both figures.
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Figure 4. MAGE genes in tumours, their preferential location on the X-chromosome, and extra-
X-chromosome gain in male tumours: (A) The locations of MAGE group genes on the human
X-chromosome. (B) A heatmap of the expression of MAGE group genes in different cancer types.
(C) A table of X-chromosome gain summary statistics in six cancer types from the Mitelman Database
of Chromosome Aberrations and Fusions in Cancer. Reprinted (A,B) from Ref. [70], CC-BY licence;
(C) from Ref. [22], CC-BY licence.

It was supposed that the stress tolerance assigned by MAGEs might explain why many
cancers capable of surviving anticancer treatments aberrantly express them [70,71]. At the
molecular level, MAGEs are regulators of transcription factors, but many also bind to E3
RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and
subcellular localization. Moreover, a majority of CTA/MAGE are intrinsically disordered
proteins (IDPs), toggling promiscuous links with various substrates, in a dosage-sensitive
manner [72,73]. In general, the IDPs enable discrete cell transitions from one state to another
and can change cell fate [73,74].

The MAGE-A group and MAGE-C1/C2 are involved in p53 suppression and cancer
invasion [70,75]. In turn, the suppression of p53 can induce abnormal gametogenesis
and parthenogenetic development in tumours [76]. MAGE (and CTAs in general) protect
spermatogenesis under stress conditions (e.g., famine) in vivo [71].

CTA genes, including MAGEs, have been recently excellently reviewed [6,7,70]. There-
fore, we only briefly indicate some functions of selected CTA genes which provide key
points for our further analysis of GG STRING PPI networks.
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The population of GAGE-expressing male and female germ cells is partially
OCT4-positive [77].

MAGE-A3/6 downregulates autophagy and apoptosis in response to cellular starva-
tion [78] and also supports genome stability via the degradation of retrotransposon RNA [79].

- MAGE-A11 forms complexes with MAGE A3/6 and regulates AR function in sper-
matogenesis and somatic sex determination [80], and also interacts with AR and PR to
favour embryo implantation [70].

- MAGE-B2 (locus Xp21.2) coincides with the position of NORB1, whose doubling or
deletion leads to dosage-sensitive sex reversal [81].

- MAGE-C1/C2—involved in p53 suppression and cancer invasion [70].
- SPANX-N and (A–D) (Xq261-27.3)—(A–D) is the human gene family derived from the

rodent SPANX-N, they are responsible for sperm motility (SPANX-N) and sperm head
packaging (A–D) [77,82], and were also found to be controlled by the nuclear lamina
in melanoma [83].

- The antigenic PRAME is a very important master gene connecting the meiotic giant
nucleus of the cancer cell genome network with the MAGE-A cluster (Figure 3A).
As a nuclear receptor transcriptional regulator, it activates the embryonal stemness
(through OCT4A) and PGC program (through SOX17) [84] and it also downregulates
cell differentiation as a dominant retinoic acid receptor signalling gene [85]. So,
PRAME can be crucial for cell fate change and soma-germ transition. PRAME is
overexpressed not only in many solid tumours but also in myeloid leukaemia [86].

More than 300 human-specific genes and 1000 primate-specific novel genes appear
to be implicated in brain development and male reproduction [87] and often share the
chromosome location and functions. A large MAGE-A group of spermatogenic genes is
located in the X-fragility Xq27.3 locus, which is associated with the FMR1-mental disability
syndrome [88] coupled with a low sperm count in men [89] and mild ovarian failure
in affected women [90]. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) [91]
is another pathology involving this site. A more detailed CTA-related brain-associated
pathology review and discussion are out of the scope of this article.

These literature insights will help in interpreting the gametogenic gene STRING
networks which we further analysed. Short synopsis on CTA genes is given in Box 1.

Box 1. CTA genes evolution and function in short.

CTA genes emerged in mammals for strengthening male gametogenesis in stress conditions and are
almost selectively expressed in the testis (and also in the ovarium, placenta, and brain). The most
important MAGEA group is located at the fragile site on the X-chromosome. CTA are under strong
epigenetic control. When demethylated and abnormally overexpressed, they act as oncogenes, due
to their effect on the tumour suppressor p53 and other mechanisms, while also activating embryonal
stemness, primordial germ cells, and oogenesis. Their overexpressed proteins also acquire the
properties of antigens.

4. STRING Network Analysis of GG Genes in the Human Genome along the
Evolutionary Phylostratigraphic Axis

The list of 1474 gametogenic (GG) genes is compiled from the CTDatabase [92] cancer-
testis genes, the germ-cell-specific genes from the work of Bruggeman et al. [23], and the
MeiosisOnline meiotic gene database extended with a manually curated gene list (SYCP1,
SYCP2, SYCP3, SYCE1, SYCE2, HORMAD2, MAEL, MEIKIN, MEIOB, MEIOC, SYC E1L,
TEX11, MAJIN, FAM9C, FAM9B, FAM9A, REC114, TEX19, BRME1, TEX14, MSH4, and
TEX15). For the purposes of this work, we have extended it further, adding genes of early
embryogenesis (POU5F1, ZP4) and genes from the pregnancy/placentation functional
modules recently identified by us to be upregulated in MDA-MB-231 cells on day 5 after
doxorubicin treatment [20]. The phylostratigraphic distribution of these genes was deter-
mined using the gene phylostratigraphy data from the work of Trigos et al. [11]. This gene
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list, now designated GG+, is presented in Table S1 alongside their respective phylostrati-
graphic groups (phylostrata). The STRING PPI networks were constructed separately for
phylostrata 4–5, 8, and 10–16 at medium confidence, while the phylostrata 1–2 network
is republished [8]. The STRING database’s [93] web interface was used to prototype the
networks and identify their giant components, after which the STRING network tables
were downloaded and the final design of the networks was constructed using ggraph [94]
and ggplot2 [95] in R.

Stratum 1 + 2 (Figure 5). The modules of the cell cycle, meiotic cell cycle, DNA
repair and recombination, and gamete generation were revealed. It indicated the already-
established emergence of meiosis and sex in UC eukaryotes. Notably, a loose subnetwork
of gamete generation is not integrated into the dense network core component, including
meiotic recombination and DNA repair genes. It may mean that, in this case, meiosis could
be present in one of its evolutionarily earlier forms—endomitotic or zygotic [96–98].
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Stratum 4 + 5 (Figure 6): Two interacting network clusters are presented. A central
subnetwork is a cluster of meiosis networked with the generation of both gametes (gametic
meiosis). The meiotic cluster (including PRDM9, MRE11, TEX11, MCMDC2, and other
essential genes for the homologous pairing and programmed repair of DNA DSBs, like
MCMDC2 [99]. This cluster also includes NANOS1 (light-blue), which downregulates
mitosis during female germline development [100] and possesses the features of oncofetal
oncogenes [101], with a direct link to DAZL. DAZL (triple-coloured) is a hub of early
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embryogenesis (ESCs) and the development of primordial bisexual germ cells (PGCs) [102].
Furthermore, three other key genes of the ESC and PGC determination, PRDM14, BMP4,
and WNT3, are present [103]. Another big cluster highlights the mito-meiotic cell cycle
transition. The genes of this cluster indicate replication stress (ATAD5), DNA replication
and S/M and G2/M checkpoints (TICRR, CLSPN), DNA double-strand break repair via
homologous recombination (FAM175A, RAD51AP1), delay in G2/M phase progression
(GTSE1), inactivation of the anaphase-promoting complex, metaphase–anaphase transition
in meiosis I (CCNB3), microtubule motor (KIF14), and remodelling of MTOC during oocyte
maturation (FBXO5, CEP152). The cluster also includes the meiotic crossover junction
endonuclease EME1.
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In summary, we see the role of Strata 4 + 5 in the mito-meiotic transition induced
via replication stress and DNA double-strand breaks (likely transiting the mitotic G2/M
with its DNA damage checkpoint into meiotic prophase [104,105]), gametogenesis net-
worked with meiosis (gametic meiosis), converging on the establishment of the Metazoan
preimplantation embryo and germline lineage (PGC), and oocyte maturation with the
oncofetal potential, which is also supported by the literature data and linking Stratum 5
with oncogenic driver genes [10,106].

Stratum 8 (Figure 7): This GRN part embraces mostly “reproductive processes”
(GO:0022414) at the level of individual organisms. A gene central to the network, FOS,
represented by its AP-1 dimer (with JUNB), highlights a general stress response. In the re-
productive context, FOS is critical for the upregulated expression of key ovulatory genes in
human granulosa cells, mediated through hormonal receptor PGR and EGF signalling [107].
At the same time, FOS and JUN B are members of the “female pregnancy” GO module
(GO:0007565). Thus, here the master stress-response protein FOS unites two somatic mod-
ules of reproductive processes: the cluster of endocrine somatic sex determination, on the
right, and the immunity/placental cluster, on the left. Most genes of the GO “female preg-
nancy” module (GO:0007565), IL-1β, VEGFA, THBD, AREG, PGF, PTHLH, AGT, FOS, and
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JUNB, are interlaced with the immunity network of cell communication and angiogenesis
knotted via cytokines IL-10 and IL-1β. In addition, we find a cluster related to conventional
meiosis I including the centromeric cohesin REC8 and its stabilisers (SGO1,2) and the
central elements of SC (SYCP1, SYCE1). This subnetwork is connected to the ZP3/ZP4
zona pellucida proteins (the vertebrate egg-coating glycoprotein interacting with ECM) that
enclose the matured oocyte and early embryo [108]. Another link between the somatic
regulation of reproduction to generative embryonic stem cells is seen through the inclusion
of the POU5F1, a key to embryonic pluripotency and PGC development [109].
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lostratum of the human genome. Genes (nodes) belonging to enriched functional modules of
interest are displayed in the form of pie charts. The main functional modules are also designated by
the coloured text (e.g, red—reproductive process, yellow—centromere, etc.). Hypergeometric test
** p-value < 0.01; *** p-value < 0.001.

Here, the cluster of somatic sex determination (“the determination of sex and sexual
phenotypes in an organism’s soma and involving endocrine regulation”) reveals key genes.
DMRT1 (the double-sex-related transcription factor) is involved in sex determination and
gonadal development (stimulation of Sertoli cells and ovarian follicles [110,111]). Its ex-
pression in PGCs is not sexually distinctive; moreover, DMRT1 is haploinsufficient for
testicular development, and it can cause male-to-female sex reversal in the embryo. In
humans, DMRT1 is critically required for the development of the testis during the foetal
period. In the adult testis, DMRT1 is predominantly expressed in Sertoli cells and is
also required in spermatogonia, enabling the restoration of their pool after sperm deple-
tion. Another gene involved in epigenetic sex determination, CYP19A1 is involved in the
androgen-to-oestrogen receptor conversion (AR-ER) by aromatase P450. Its activity in
males is restricted by methylation, while the haploinsufficient-for-males DMRT1 is more
methylated in females [112], both thus epigenetically preventing male-female sex reversal
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in the embryo. The actions of steroid androgens such as testosterone and dihydrotestos-
terone are mediated via the X-linked androgen receptor (AR). It becomes hyperactive
(undermethylated) in breast- (regardless of patient sex) [113,114] and castration-resistant
prostate cancers [115]. AR is also involved in the brain and some other tissue functions [116].
The third gene of this cluster NROB1 (DAX1) is related to sex determination and reversal
through its link with glucocorticoid receptors (adrenal gland), while SOX3 is involved in
sex determination and brain development. The balanced sex determination via this system
provides the normal male/female birth sex index ratio (approximately 1). More about the
hypothalamus-gonadal endocrine sex regulation can be found below, in the section devoted
to male infertility. Short synopsis on the String analysis of strata 1–8 is presented in Box 2.

Box 2. Short synopsis on the analysis of reproduction modules in evolutionary Strata 1–8.

The in silico phylostratigraphic analysis of nearly 1500 genes known to be involved in reproduction
revealed the preservation and interconnection in the human genome of reproductive functional
modules (gene networks) that had emerged throughout the whole evolution of life on Earth. In
unicellulars (Strata 1 + 2), meiosis and sexual reproduction were already established. In early
multicellulars (Strata 4 + 5), the mechanism of soma to germline transition emerged with a link
to meiosis, ESC, and embryo development (important for parthenogenetic cancer initiation). In
complex animals (Stratum 8), the immune response and proto-placentation (providing invasion and
vascularisation) emerged simultaneously with somatic (hormonal) sex determination. Importantly,
both are induced and linked by early stress response genes and involve the master embryonal stem-
ness gene OCT4 (POU5F1), with male sex determination being more genetically and epigenetically
restricted than female.

The aromatase CYP19 for the AR-ER transition coded by its respective sex deter-
mination gene is expressed in the reproductive organs and the brain of most mammals.
Notably, in primates, an LTR-ERV-promoted transcriptional variant of this gene confers the
alternative expression to the placenta [117].

In summary, we see the organism-level regulation of reproduction via cytokine-
cytokine receptors and growth factors for cell communication in immunity fused with the
placental regulators, mostly for angiogenesis linked by the general early stress response
gene FOS to the establishment of the vertebrate endocrine somatic sex determination. This
somatic regulation also has links to the established meiosis and the mature oocyte-early
embryo vertebrate development. As it looks, the whole set, if not fine-tuned for males or
altered, is inclined by default for embryo sex reversal and female germline development.

The placenta module, standing out in Phylostratum 8, much before the development
of Eutherians, seems confusing. Therefore, in the next section, we inserted a mini-review
devoted to placenta evolution and its cancer-related issues.

5. Mammalian Placenta Evolution, Immunity, and the Enrichment of the “Female
Pregnancy” GO Module in Genotoxically Challenged PGCCs

Before mammalians, in the teleosts (Teleostomi, Phylostratum 8), a “follicular pla-
centa”, lined with microvilli and surrounded by the highly vascularized tissue to facilitate
maternal-foetal exchange, has arisen several times, making it a model for the evolution of
placentation [118]. However, it is only in mammals that the placenta has developed from a
trophoblast lineage specified in an embryo from the morula stage [119], which in humans
is represented by its invasive variant [120,121]. It is noteworthy that the resulting placental
structures of mammals and their associated trophoblast cell populations appear not to be
governed by particular master genes but rather depend on widely expressed transcription
factors embedded into the intercellular communication network of immunity cytokines
and growth factors (which also evolved in Euteleostomi [11]) and operating in a combina-
torial manner [120]. There are few predominantly placenta-specific genes, e.g., GCM1, a
transcription factor that plays a role in controlling the formation of syncytial trophoblast
(STB) [122]. Intriguingly, it was found recently that ancestral retroviral infections have
provided a source of novel protein-coding genes that have played a role in the Eutherian
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evolution. In many species, the placenta expresses a range of endogenous retroviruses
(ERVs) that are involved by integrating part of their DNA (env) into the regulatory part
of placental genes to produce the cell-fusing syncytins of the syncytiotrophoblast, the
most specific structural component of the placenta [120,123–125]. The transmembrane
fraction of syncytins called the immunosuppressive domain (ISD), which can induce the
severe immunosuppression of host cells, is therefore potentially oncogenic. The proviral
activity of the retrogenes is controlled by the innate immune response to viral and cytosolic
DNA fragments (the cGAS-STING pathway [126]). However, in senescent and cancer
cells, this pathway may be unleashed, particularly by anticancer treatment, resulting in
the activation of the GO module of ‘female pregnancy’ in the PGCCs undergoing repeated
rounds of mitotic slippage [20]. As reported, the induced change of gene networks in
the Doxorubicin-treated triple-negative breast cancer MDA-MB-231 cells (exampled and
illustrated in Figure 8A at day 5 post-treatment) is mostly highlighted by the differentially
expressed gene phylostratigraphic distributions markedly peaking at the 8th phylostratum
(Figure 8B), which is related to innate immunity and hubbed, in particular, by IL-1β [20].
The highly upregulated IL-1β shares the enriched ‘female pregnancy’ module (Figure 8A,C)
with modules related to innate immunity, which has originated in Euteleostomi (see above
in Figure 7).
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Figure 8. The transcriptome response of MDA-MB-231 cells to 100 nM-24 h Doxorubicin (DOX)
treatment sampled on day 5: (A) The STRING network of upregulated genes (green-marked) in the
8th phylostratum; ten of them belonging to the ‘female pregnancy’ module (GO: 0007565) are coloured
red and occupy central positions in the network. (B) The DOX-upregulated gene phylostratigraphic
distribution (green bars against the red-lined whole-genome reference) showing the strong activation
of Str 8 via DOX. (C) The “female pregnancy module” upregulated genes (log-folds). (B) Republished
from Ref. [20], CC BY 4.0 licence.

6. String Network Analysis (Continuation) Strata 10–16

This gametogenic subnetwork of the human genome in Strata 10–16 (Figure 9) is of late
evolutionary origin (mammalian-human). It is mostly represented by X-linked CTA protein
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interactions highlighting spermatogenesis. It is enriched with the MAGE group and related
reproduction processes. In particular, all these genes are also potential oncogenes [5–7].
The densely intertwined CTA-MAGE core of the network (predominantly from the long
arm Xq27-28, (see details in Figure 4)) drives spermatogenesis from the proliferation of
spermatogonial cells, including the FATE1 (Xq28) gene. This important gene, which is
strongly active in embryonic and adult spermatogenesis, is a key factor in decreasing the
sensing of stress [127] and is harnessed by cancer cells to escape apoptotic death and resist
the action of chemotherapeutic drugs [127,128].
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Figure 9. The STRING network of GG+ genes (Table S1) corresponds to the 10th-16th evolutionary
phylostrata. Genes (nodes) belonging to enriched functional modules of interest are displayed in the
form of pie charts. The giant component of the network belongs mostly to MAGE-associated genes of
spermatogenesis, it is connected to the subnetwork of the embryonic stem cell (ESC) and primordial
germ cell (PGC) development. The link of MAGE-A11 to the androgen receptor (AR) is indicated
by a red dashed line. The two genes sharing spermatogenic functions with brain development are
yellow-marked. Hypergeometric test * p-value < 0.05; *** p-value < 0.001.

Two other notable genes are TEX15 (8p12) required for DNA DSB, chromosome synap-
sis, and meiotic recombination in spermatocytes; while SPANXN and (A-D) families (Xq26.2
-27.3) are strictly associated with spermiogenesis (sperm motility and head packaging [129])
and are strongly involved in melanoma genesis [130]. Furthermore, the gene FMR1NB
(Xq27.3) has both spermatogenic [131] and oncogenic functions [132]. It is the closest
neighbour of the gene FMR1 (associated with mental disability and reduced fertility X-
fragility syndrome). The aligned looser subnetwork of CTA genes includes the SPANX-N
family and the MAGE B1-B6 group (neighbours of the NROB1 gene of dosage-sensitive
sex determination [81] on the short arm of the X-chromosome (for localisation details
see Figure 3). The CTA45A gene family is composed of the testis-restricted cancer genes,
whose tumorigenic, invasive (EMT-promoting) capacity is enhanced by growth factors as
examined in breast cancer. The genes of the CTA47A family, which are testis-restricted,
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form a compact group on the Xq24 locus and also interact with CTA genes on the Xq28
(MAGEA1) and Xp22.2 locus [133]. The function of the CTA 44-47 families is evidently
spermatogenesis-oncogene-related (as seen in GeneCards) [134] (as manually labelled).

A more remote subnetwork, including the DPPA group—development pluripotency-
associated genes—belongs to the ESC and PGC module, it importantly includes the ESC
master gene NANOG, which is strongly expressed in foetal gonocytes and in situ germ cell
cancer [133]. This subnetwork also includes DNMT3L, inherited by maternal imprinting
which promotes neural tube, placenta, and ovary development, and inactivates RT in the
male germline, safeguarding it from mutations. This ESC/PGC subnetwork is converging
to DPPA4—the development pluripotency chromatin modifier, which links it (through
the multidrug-resistance gene MDR1 for the brain–blood barrier) to the FATE1-mediator
gene bridge connecting large clusters of spermatogenesis and CTA/MAGE-A. In turn, the
CTA/MAGE-A subnetwork converges to the PRAME gene. The PRAME gene (chr #22)
represses endoderm differentiation, activates the POU5F1 promoter for the induction of
ESC and modulates SOX17 to function as a master PGC gene [84]. In addition, PRAME
is activated by IFN-γ closely associated with cGAS-STING (sensing cytosolic DNA) and
IL1β signalling [135].

In summary, the reproductive CTA genes of the Strata 10–16, which originated in
mammals and expanded in primate evolution and, even more, in humans, are largely X-
linked or maternally imprinted, and aimed in general for the support of the male germline
development, from spermatogonia to sperm maturation. They provide stress protection
for the male reproductive system; however, paradoxically, they also acquired the functions
of antigens and oncogenes. The CTA module of this stratum is capable of activating the
modules of ESCs and sexually undifferentiated PGCs, due to the included ESC master
gene NANOG. Activated NANOG, in turn, is well-known for its cooperation with the
pluripotency transcription factors POU5F1 (OCT4) and SOX2, which are the “pioneers” of
development [136]. Short synopsis on the analysis of reproduction modules in evolutionary
Strata 10–16 (Box 3). It seems important to further clarify the potential carcinogenic link
between late spermatogenetic Phylostrata of mammals and humans and the Phylostratum
8, which evolved much earlier.

Box 3. Short synopsis on the analysis of reproduction modules in evolutionary Strata 10–16.

The phylostratigraphic in silico analysis of gametogenetic genes reveals the dominating spermato-
genesis regulation employed by multiple families of X-linked CTA cancer-testis associated genes
with the connection to the early embryogenesis and primordial germ cell development-driving
master gene NANOG. CTA genes have a path to somatic sex determination through the androgen
receptor (AR), while the whole CTA group is linked by its master regulator PRAME to meiosis. This
connection is common for many cancers, also female, as shown in Figure 4.

7. The Causal Link between the GG Genes of the 8th Phylogenetic Stratum and
CTA-Enriched Strata 12 and 14 in Spermatogenesis and in Cancer Progression

In our previous bioinformatic study on the distribution of polyploidy (WGD)-
upregulated GG genes in TCGA tumours (using Quinton et al.’s data [137] on the dif-
ferential expression between diploid and polyploid tumours), we characterised the GG
gene distribution histograms of 17 primary tumour types from the TCGA database [8]. The
typical phylostratigraphy profile for common solid cancers with the dominating Stratum 2
is presented for polyploid BRCA in Figure 4B. Between 17 tumour types selected via
polyploidy, there were two distinguished and opposite patterns for testicular germ cell
tumour (TGCT) and head and neck squamous carcinoma (HNSC). In polyploid TGCC,
Stratum 8 and further strata were absent, while in HNSC, on the contrary, those were highly
expressed (Figure 10A,B).
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Figure 10. Phylostratigraphy analysis of GG+ genes differentially expressed in polyploid cells of two
tumour types and depending on tumour stage, from TCGA database: (A,B) differential expression of
GG between diploid and polyploid tumours (using Quinton et al.’s data [137] in TGCT and HNSC);
(C,D) HNSC: (C) the gene counts (from GG+ Table S1 presented as bars per Phylostrata) in polyploid
samples (threshold > 3.5) compared with normal tissue, for I-IV cancer stages; (D) the fold increase in
GG+ gene count per Phylostrata from Stage I to Stage IV. (A,B) Republished from [8] under Creative
Commons CC-BY licence.

To understand the situation with testicular germ cell cancer (TGCT), it is useful to learn
about its development in ontogenesis. The TGCT are derived in adulthood from dormant
PGCs [138] and PGC/gonocyte-like germ cell neoplasia in situ (GCNIS) [139]. Accordingly,
they do not undergo the full spermatogenic pathway and it is reported that some of them do
not express CT antigens [140]. From our data, it follows that regulation of spermatogenesis
encoded by CTAs in mammals needs the expression of the proteins encoded in Stratum 8
(immunity and sex determination) and that polyploidy-related testicular tumours are likely
void of the regulation via both sex determination and CTA.

Here, for HNSC strongly expressing Str. 8 and CTA genes associated with polyploidy
(see Figure 3B), we decided to analyse the distribution of the differentially expressed
(compared to 44 normal samples) GG+ in the phylostratum peaks depending on the cancer
stage and polyploidy, as verified with a large number of TCGA-HNSC samples (Stage
I–25, Stage II–74, Stage III–74, and Stage IV—259 samples). Polyploidy samples were
filtered with a threshold > 3.5 using GG+ (Table S1). As can be seen in Figure 10C, the
number of the GG genes available for analysis, which is generally the highest in Str 2,
also undergoes predominant peaking there at Stage I, along with the increase in Str 4–5
and 8, whose GG numbers are relatively smaller, while the reaction of Str 12 is weak,
and of Str 14 practically absent. However, with cancer progression and particularly at
Stage IV of disseminated metastatic cancer, the profile is changing its vector, favouring a
more significant GG+ contribution of Str 8 and later strata. The difference in fold increase
in the involved GG+ gene count in each stratum of interest comparing Stage IV with
Stage I, as presented in Figure 10D, clearly shows this tendency and the particularly big
response of the hominid CTA MAGE-rich Str.14 (10-fold). It indicates the crucial role of
CTA genes in the polyploidy-related metastases of this cancer type. Although HNSC has a
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good prognosis for patient survival at the initial stages, recurrent or metastatic HNSC is
largely incurable [6].

The genome instability of mammals and endocrine disruption enhanced by the current
environmental pollution and climate change synergistically potentiate male infertility,
embryonic sex reversal probability, and increase cancer risk. These factors are also linked
to developmental disorder risk. The following sections will briefly outline these aspects.

8. The Global Decline of Male Fertility, the Link to Cancer Risk, and the Consequence
of Endocrine Disruption

The first evidence of a global impairment of male reproductive health was published
in 1992 [141]. The authors reported a significant (two-fold!) decrease in mean sperm
counts from 113 million/mL in 1940 to 66 million/mL in 1990 in the United States, and
many European, South American, African, and Middle-East countries (Figure 11A). They
also reported the concomitant increase in the pathologies and morbidities of the male
reproductive tract such as testicular cancer, cryptorchidism (undescended testicles in
newborns), and hypospadias.
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Figure 11. The decline of male fertility in the 80-year period (1930–2010): (A) Linear regression of
mean sperm concentration reported in 61 countries (represented by circles whose area is proportional
to the logarithm of the number of subjects in the study) each weighted according to number of
subjects, 1938–1990. (B) Significant decline of sperm concentration in Western and other countries
(slope per year −0.70 million/mL; 95% CI: −0.72 to −0.69; p < 0.001) over the study period when
using simple linear models. Reprinted (A) from Ref. [141], with permission from Carlsen, E. et al.,
BMJ; published by BMJ, 1992 and (B) from Ref. [142], with permission from Levine, H. et all, Hum.
Reprod.; published by Oxford University Press, 2017.

Many researchers considered the data from this publication as a kind of slowly ticking
bomb threatening mankind, and many studies were initiated to either confirm or overturn
these data. The following publications were very controversial—some of the studies did
not confirm the decline in semen quality over time [143,144], whilst the data from the others
supported such a decline [145–148]. However, there were important limitations connected
to all these studies: (1) the data were poor or highly variable; (2) the validity of the
statistical methods was questionable; (3) different study populations were investigated; and
(4) confounding factors such as age and abstinence time (time between sample collection
and last ejaculation) were not taken into account in all studies [142].

The first systematic review and meta-regression analysis of temporal trends in sperm
counts was published in 2017 [142]. It reported a significant overall decline in semen quality
in men from North America, Europe, Australia, and New Zealand, analysed between 1973
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and 2011. Declines were most pronounced among men unselected through fertility—they
showed a decrease of 59% (−1.6% per year) over the study period (Figure 11B). Declining
slopes remained unchanged after controlling for multiple covariates: age, abstinence time,
method of semen collection, method of counting sperm, selection of population and study
exclusion criteria, number of samples per man, and completeness of data. Thus, these data
provided a robust indication of a decline in male reproductive health in North America,
Europe, Australia, and New Zealand over the four decades.

The most recent systematic review and meta-regression analysis of semen samples
collected globally in the 20th and 21st centuries confirmed a 50–60% decline in sperm
counts among unselected men from all continents, including South and Central America,
Asia, and Africa [4]. The 21st century is hallmarked by the acceleration of sperm count
decline (Figure 12).
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Figure 12. Meta-regression models for mean sperm concentration by collection year among unselected
men from all continents, adjusted for potential confounders, for the whole period and additionally
restricted to the studies after the year 2000. Sperm concentration decline accelerates from the year
2000 onwards, with a slope of −1.73 million/mL per year as compared with the dynamics of the
20th century, if continued (the blue line in the square). Reprinted from Ref. [4], with permission from
Levine, H. et al., Hum. Reprod.; published by Oxford University Press, 2023.

The level of testosterone in adolescent and young adult men as monitored in the
USA from 1999 to 2016 was also decreasing by 1% per year [149]. Sperm counts and other
semen parameters have been plausibly associated with multiple environmental influences,
including endocrine-disrupting chemicals [150,151], pesticides [152], heat [153], lifestyle
and diet [154,155], stress [156,157], smoking [158], and elevated body mass index [159,160].
Therefore, sperm count may sensitively reflect the impacts of the modern environment on
male health throughout the life course [161], while severe infertility is a marker of genome
instability as such [162].

In addition to the global decline of semen quality, an alarming relationship between
decreased semen quality and infertility on the one side, and increased morbidity and
mortality on the other side, has been observed. It has been reported that men from infertile
couples have approximately two-fold more morbidities as compared to their fertile coun-
terparts [163]. Infertile men are at a higher risk of having diabetes, cardiovascular diseases,
auto-immune diseases, rheumatic arthritis, and multiple sclerosis [164–166]. Infertile men
also have a 1.5-fold higher risk of cancer, and a 2-fold higher testicular cancer risk in
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particular [167]. Moreover, infertile men with the most severe phenotype—azoospermia (a
complete absence of spermatozoa in ejaculate) exhibit a 3-fold higher risk of any type of
cancer, as compared to men without fertility problems [164].

Also, it has been shown that decreased sperm quality has a significant correlation with
increased mortality [168,169]. More than 20 years ago a Danish group led by Skakkebaek
introduced “testicular dysgenesis syndrome (TDS)”—an increasingly common develop-
mental disorder with environmental aspects. They suggested that declining semen quality,
increasing testicular cancer, undescended testis, and hypospadias share a common patho-
genesis and are the features of the same TDS [170]. Experimental and epidemiological
studies showed that TDS is a result of disruption of embryonal programming and gonadal
development during foetal life by different endocrine disruptors that have polluted our
modern environment, and humans are massively exposed to it through food, water, cos-
metics, and construction materials, etc. [150,151]. A scheme of the endocrine disruption of
male fertility based on somatic sex determination from [171] modified with the addition of
female regulation is given in Figure 13.
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Figure 13. A scheme of the hypothalamic-pituitary-gonadal axis regulating spermatogenesis and the
effects of endocrine disruption causing “testicular dysgenesis syndrome”. Abbreviations: GnRH—
gonadotropin-releasing hormone; FSH—follicle stimulating hormone; LH—luteinising hormone;
ER—oestrogen receptor; PR—progesterone receptor; T—testosteron. Adapted from Ref. [171], CC 3.0
Licence. Modified here with the addition of female regulation pathways (in red font).
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9. Conclusions

The human genome gene network is composed of two evolutionary parts—the UC
part, encompassing the most essential daily functions which gave birth to the cell cycle, the
DNA damage response, meiotic DNA recombinational repair, and gametes. The second is
the MC part. The early MC genes are partially ambivalent (Strata 3–5). It can be relatively
easy, via the activation of c-Myc, polyploidy, and bivalency, to be united with the dense
network of the UC core, providing a basic framework for gametogenesis via cancer pseudo-
embryogenetic (parthenogenetic) PGCCs or amoeboid sporogenesis. The main cancer
drivers enabling this via mutations or epigenetically are pre-programmed as the normal
regulators of the reproductive process that evolved over that same period. Therefore, cancer
had already appeared in the Hydra. The evolution of UCs and early MCs was very long
(~3 Bya) and relatively gradual. The 2R—genome doublings pushing the Cambrian explo-
sion in vertebrates and allowed for the huge variety of newly emerged genes and animals,
but the evolution of mammals started only ~250–200 Mya, and that of primates even later,
and it had another rate, accelerated by retrotransposon bursts and their DNA insertions
in the genomes. It created the incredible complexity of the mammalian and the human
brain. The complex biological systems are intrinsically unstable and are thus able to adapt
to the environment and change cell fates through exploration and learning [15,172,173].
In this review, we gathered evidence on the features of genome instability and its use
in the evolution of mammals and hominids, including segmental genome duplications,
increasing retroviral domestication and their ongoing activity, and genome fragility as a
source and consequence of both adaptations and cancer. Those also created CTA genes for
supporting male reproductivity, counteracting environmental stress with high adaptability
(using ERVs for constructing the alternative promoters for other tissues (different from the
testis), and intrinsically disordered domains for post-translational switching of cell fate and
tissue functions). The reason why only male reproduction needs protection becomes clear
from our analysis of the STRING networks in the evolution of reproductive systems: it was
created by evolution as female by default, to ensure life continuation in the embryo. We
revealed how CTAs also interact with the evolutionary reproduction somatic tools from Eu-
teleostomi, with the shaky for the male somatic sex determination system, and also comply
cellular communication presented via the immunity and vascularisation/invasion (“female
pregnancy”) system in cancer aggression. It is interesting that we came upon the same
crucial significance of immunity for polyploid versus diploid cancers, as Quinton et al. [137]
found via differential gene expression analysis through investigating the GG modules,
which unmasked the involved proto-placental component of PGCCs. The instability of the
human genome and adaptive plasticity in the regulation of CTA genes aiming to stabilise
spermatogenesis against environmental stress still appeared a too-fragile instrument in the
face of the challenges of environmental pollution, increasing social stress, and particularly
endocrine disruption. Both the Scylla of the preferential female gametogenesis-linked
carcinogenesis formed at the beginning of UC-MC evolution and the Charybdis of the
embryonic male-to-female sex reversal hidden in the sex determination system and estab-
lished in the vertebrate evolution make the journey of the human male germ differentiation,
which is sailed via the CTAs, unsafe, and under stress conditions increases the risk of
infertility and gametogenesis-linked cancer, “female” by its origin. The acquisition of
the second active X-chromosome through malignant tumours aggravates the story. This
story is not contradictory but likely complimentary to the hypothesis of Lavia et al. [174],
who proposed a model based on Waddington’s cell differentiation landscape, whereby
LINE-1 expression in adult cells triggers chromatin remodelling and reactivates embryonic
circuits, ultimately leading to cancer malignancy. The bridge between the two evolution-
ary branches of human cancer, early and late, arbitrarily “female” and “male”, joined by
stress-induced FOS/JUN/MYC immunity- inflammation- linked events, which favours the
suppression of male fertility, while increasing the drive towards cancer development (as
revealed in our analysis), is schematised in Figure 14.
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Figure 14. The evolutionary route of the link between reducing male fertility and the increasing
risk of cancer emerging in mammals and Eutherian hominids driven by DNA damage and stress
response through toggling sex determination and immunity/angiogenesis-invasive (“placentation”)
activities towards parthenogenetic cancer. Abbreviations: Str—Phylostrata; DDR—DNA damage
response; PGCC—polyploid giant cancer cell; ESC—embryonic stem cell; PGC—primordial germ
cell; ERV—endogenous retroviruses.

Without a doubt, many means of combinatorial individual cancer treatments are being
and can be further developed, in particular by modulating immunity, which can prolong
the life of the patients with metastatic cancers. The most urgent need of mankind for
survival is to stop environmental pollution with organic materials, delay atmospheric
heating, and shift to a healthier lifestyle.
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