Effect of Melt-Derived Bioactive Glass Particles on the Properties on Chitosan Scaffolds
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Rīgas Stradiņa universitāte
Rīga Stradiņš University
Rīga Stradiņš University
Abstract
ajā pētījumā ziņots par trīsdimensiju (3D) hitozāna/bioaktīvā stikla kompozītmateriālu sastatņu apstrādi. No vienas puses, hitozānam kā dabiskam polimēram ir piemērotas īpašības audu inženierijas lietojumiem, taču tam trūkst bioaktivitātes. No otras puses, ir zināms, ka bioaktīvās brilles ir bioaktīvas un veicina augstāku kaulu veidošanās līmeni nekā jebkurš cits biomateriāla veids. Tomēr bioaktīvās brilles ir cietas, trauslas un tās nevar viegli veidot. Tāpēc pēdējos gados pētnieki ir koncentrējušies uz jaunu kompozītmateriālu apstrādi. Grūtības sasniegt kompozītmateriālus, kas izgatavoti no polimēra (sintētiskā vai dabīgā) un bioaktīvā stikla, ir: (i) lielais stikla blīvums, kas bieži izraisa stikla segregāciju, un (ii) ātra bioaktīvā stikla reakcija mitruma ietekmē, kas izraisa izmaiņas stikla reaktivitāte un/vai izmaiņas polimēru matricā. Paraugi tika sagatavoti ar 5, 15 un 30 svara% bioaktīvā stikla S53P4, kā apstiprināts, izmantojot termogravimetrisko analīzi. Mikro-Datortomogrāfija un optiskā mikroskopija atklāja pārslveida struktūru ar porainību virs 80%. Poru izmērs samazinājās, palielinot stikla saturu līdz 15 masas%, bet palielinājās atpakaļ, kad stikla saturs bija 30%. Tāpat sastatņu mehāniskās īpašības (saspiešanā) stikla saturam palielinājās līdz 15%, bet pazeminājās pie lielākas slodzes. Tika konstatēts, ka no sastatnēm izdalītie joni izraisa kalcija fosfāta reaktīvā slāņa nogulsnēšanos uz sastatņu virsmas. Šī ir pirmā norāde uz šo materiālu iespējamo bioaktivitāti. Kopumā hitozāna / bioaktīvā stikla kompozītmateriālu sastatnes tika veiksmīgi ražotas ar poru izmēru, apstrādājamību un spēju veicināt kalcija fosfāta slāni, kas liecina par kaulaudu inženierijas solījumu, un mehāniskās īpašības var attaisnot to izmantošanu nenesošos lietojumos.
This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4, as confirmed using thermogravimetric analysis. MicrO–Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.
This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4, as confirmed using thermogravimetric analysis. MicrO–Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.
Description
Medicīna
Medicine
Veselības aprūpe
Health Care
Medicine
Veselības aprūpe
Health Care
Keywords
bioaktīvā stikla kompozītmateriāls, polimērs, hitozāns, bioloģiski noārdāmi materiāli, kaulu veidošanās, fizioloģiskais šķidrums, hidroksiapatīts, kaulu veidošanās, kaulu augšana, osteoporoze, kompozītmatrica, bioaktivitāte, bioactive glass, polymer, chitosan, biodegradable materials, bone formation, physiological fluid, hydroxyapatite, bone formation, bone growth, osteoporosis, composite matrix, scaffolds, bioactivity