Repository logo
  • English
  • Latviešu
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Latviešu
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wen, Xuejun"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds
    (2014-01-17) Beachley, Vince; Kasyanov, Vladimir; Nagy-Mehesz, Agnes; Norris, Russell; Ozolanta, Iveta; Kalejs, Martins; Stradins, Peteris; Baptista, Leandra; da Silva, Karina; Grainjero, Jose; Wen, Xuejun; Mironov, Vladimir; Biomehānikas zinātniskā laboratorija
    Effective cell invasion into thick electrospun biomimetic scaffolds is an unsolved problem. One possible strategy to biofabricate tissue constructs of desirable thickness and material properties without the need for cell invasion is to use thin (<2 µm) porous electrospun meshes and self-assembling (capable of tissue fusion) tissue spheroids as building blocks. Pre-stretched electrospun meshes remained taut in cell culture and were able to support tissue spheroids with minimal deformation. We hypothesize that elastic electrospun scaffolds could be used as temporal support templates for rapid self-assembly of cell spheroids into higher order tissue structures, such as engineered vascular tissue. The aim of this study was to investigate how the attachment of tissue spheroids to pre-stretched polyurethane scaffolds may interfere with the tissue fusion process. Tissue spheroids attached, spread, and fused after being placed on pre-stretched polyurethane electrospun matrices and formed tissue constructs. Efforts to eliminate hole defects with fibrogenic tissue growth factor-β resulted in the increased synthesis of collagen and periostin and a dramatic reduction in hole size and number. In control experiments, tissue spheroids fuse on a non-adhesive hydrogel and form continuous tissue constructs without holes. Our data demonstrate that tissue spheroids attached to thin stretched elastic electrospun scaffolds have an interrupted tissue fusion process. The resulting tissue-engineered construct phenotype is a direct outcome of the delicate balance of the competing physical forces operating during the tissue fusion process at the interface of the pre-stretched elastic scaffold and the attached tissue spheroids. We have shown that with appropriate treatments, this process can be modulated, and thus, a thin pre-stretched elastic polyurethane electrospun scaffold could serve as a supporting template for rapid biofabrication of thick tissue-engineered constructs without the need for cell invasion.
  • No Thumbnail Available
    Item
    Nanotechnological strategies for biofabrication of human organs
    (2012) Rezende, Rodrigo A.; Azevedo, Fábio De Souza; Pereira, Frederico David; Kasyanov, Vladimir; Wen, Xuejun; De Silva, Jorge Vicente Lopes; Mironov, Vladimir; Institute of Anatomy and Anthropology
    Nanotechnology is a rapidly emerging technology dealing with so-called nanomaterials which at least in one dimension have size smaller than 100nm. One of the most potentially promising applications of nanotechnology is in the area of tissue engineering, including biofabrication of 3D human tissues and organs. This paper focused on demonstrating how nanomaterials with nanolevel size can contribute to development of 3D human tissues and organs which have macrolevel organization. Specific nanomaterials such as nanofibers and nanoparticles are discussed in the context of their application for biofabricating 3D human tissues and organs. Several examples of novel tissue and organ biofabrication technologies based on using novel nanomaterials are presented and their recent limitations are analyzed. A robotic device for fabrication of compliant composite electrospun vascular graft is described. The concept of self-assembling magnetic tissue spheroids as an intermediate structure between nano- and macrolevel organization and building blocks for biofabrication of complex 3D human tissues and organs is introduced. The design of in vivo robotic bioprinter based on this concept and magnetic levitation of tissue spheroids labeled with magnetic nanoparticles is presented. The challenges and future prospects of applying nanomaterials and nanotechnological strategies in organ biofabrication are outlined.
  • No Thumbnail Available
    Item
    Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues
    (2007-06-01) Morris, Russell A.; Damon, Brook; Mironov, Vladimir; Kasyanov, Vladimir; Ramamurthi, Anand; Moreno-Rodriguez, Ricardo; Trusk, Thomas; Potts, Jay D.; Goodwin, Richard L.; Davis, Jeff; Hoffman, Stanley; Wen, Xuejun; Sugi, Yukiko; Kern, Christine B.; Mjaatvedt, Corey H.; Turner, Debi K.; Oka, Toru; Conway, Simon J.; Molkentin, Jeffery D.; Forgacs, Gabor; Markwald, Roger R.; Rīga Stradiņš University
    Periostin is predominantly expressed in collagen-rich fibrous connective tissues that are subjected to constant mechanical stresses including: heart valves, tendons, perichondrium, cornea, and the periodontal ligament (PDL). Based on these data we hypothesize that periostin can regulate collagen I fibrillogenesis and thereby affect the biomechanical properties of connective tissues. Immunoprecipitation and immunogold transmission electron microscopy experiments demonstrate that periostin is capable of directly interacting with collagen I. To analyze the potential role of periostin in collagen I fibrillogenesis, gene targeted mice were generated. Transmission electron microscopy and morphometric analyses demonstrated reduced collagen fibril diameters in skin dermis of periostin knockout mice, an indication of aberrant collagen I fibrillogenesis. In addition, differential scanning calorimetry (DSC) demonstrated a lower collagen denaturing temperature in periostin knockout mice, reflecting a reduced level of collagen cross-linking. Functional biomechanical properties of periostin null skin specimens and atrioventricular (AV) valve explant experiments provided direct evidence of the role that periostin plays in regulating the viscoelastic properties of connective tissues. Collectively, these data demonstrate for the first time that periostin can regulate collagen I fibrillogenesis and thereby serves as an important mediator of the biomechanical properties of fibrous connective tissues.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback