Browsing by Author "Tars, Kaspars"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis(2018-12-01) Brangulis, Kalvis; Akopjana, Inara; Petrovskis, Ivars; Kazaks, Andris; Kraiczy, Peter; Tars, Kaspars; Department of Human Physiology and BiochemistryBorrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.Item Structural characterization of CspZ, a complement regulator factor H and FHL-1 binding protein from Borrelia burgdorferi(2014-06) Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Bogans, Janis; Otikovs, Martins; Jaudzems, Kristaps; Ranka, Renate; Tars, Kaspars; Rīga Stradiņš UniversityBorrelia burgdorferi is the causative agent of Lyme disease and is found in two different types of hosts in nature - Ixodes ticks and various mammalian organisms. To initiate disease and survive in mammalian host organisms, B. burgdorferi must be able to transfer to a new host, proliferate, attach to different tissue and resist the immune response. To resist the host's immune response, B. burgdorferi produces at least five different outer surface proteins that can bind complement regulator factor H (CFH) and/or factor H-like protein 1 (CFHL-1). The crystal structures of two uniquely folded complement binding proteins, which belong to two distinct gene families and are not found in other bacteria, have been previously described. The crystal structure of the CFH and CFHL-1 binding protein CspZ (also known as BbCRASP-2 or BBH06) from B. burgdorferi, which belongs to a third gene family, is reported in this study. The structure reveals that the overall fold is different from the known structures of the other complement binding proteins in B. burgdorferi or other bacteria; this structure does not resemble the fold of any known protein deposited in the Protein Data Bank. The N-terminal part of the CspZ protein forms a four-helix bundle and has features similar to the FAT domain (focal adhesion targeting domain) and a related domain found in the vinculin/α-catenin family. By combining our findings from the crystal structure of CspZ with previous mutagenesis studies, we have identified a likely binding surface on CspZ for CFH and CFHL-1.Item Structural studies of chromosomally encoded outer surface lipoprotein BB0158 from Borrelia burgdorferi sensu stricto(2024-01) Brangulis, Kalvis; Akopjana, Inara; Bogans, Janis; Kazaks, Andris; Tars, KasparsLyme disease, or also known as Lyme borreliosis, is caused by the spirochetes belonging to the Borrelia burgdorferi sensu lato complex, which can enter the human body following the bite of an infected tick. Many membrane lipid-bound proteins, also known as lipoproteins, are located on the surface of B. burgdorferi sensu lato and play a crucial role in the spirochete to interact with its environment, whether in ticks or mammals. Since the spirochete needs to perform various tasks, such as resisting the host's immune system or spreading throughout the organism, it is not surprising that numerous surface proteins have been found to be essential for B. burgdorferi sensu lato complex bacteria in causing Lyme disease. In this study, we have determined (at 2.4 Å resolution) and characterized the 3D structure of BB0158, one of the few chromosomally encoded outer surface proteins from B. burgdorferi sensu stricto. BB0158 belongs to the paralogous gene family 44 (PFam44), consisting of four other members (BB0159, BBA04, BBE09 and BBK52). The characterization of BB0158, which appears to form a domain-swapped dimer, in conjunction with the characterization of the corresponding PFam44 members, certainly contribute to our understanding of B. burgdorferi sensu stricto proteins.Item Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae(2015-08-28) Kalnins, Gints; Kuka, Janis; Grinberga, Solveiga; Makrecka-Kuka, Marina; Liepinsh, Edgars; Dambrova, Maija; Tars, KasparsCutC choline trimethylamine-lyase is an anaerobic bacterial glycyl radical enzyme (GRE) that cleaves choline to produce trimethylamine (TMA) and acetaldehyde. In humans, TMA is produced exclusively by the intestinal microbiota, and its metabolite, trimethylamine oxide, has been associated with a higher risk of cardiovascular diseases. Therefore, information about the three-dimensional structures of TMA-producing enzymes is important for microbiota-targeted drug discovery. We have cloned, expressed, and purified the CutC GRE and the activating enzyme CutD from Klebsiella pneumoniae, a representative of the human microbiota. We have determined the first crystal structures of both the choline-bound and choline-free forms of CutC and have discovered that binding of choline at the ligand-binding site triggers conformational changes in the enzyme structure, a feature that has not been observed for any other characterized GRE.Item Structure of the Borrelia burgdorferi ATP-dependent metalloprotease FtsH in its functionally relevant hexameric form(2024-01) Brangulis, Kalvis; Drunka, Laura; Akopjana, Inara; Tars, Kaspars; Department of Human Physiology and BiochemistryATP-dependent proteases FtsH are conserved in bacteria, mitochondria, and chloroplasts, where they play an essential role in degradation of misfolded/unneeded membrane and cytosolic proteins. It has also been demonstrated that the FtsH homologous protein BB0789 is crucial for mouse and tick infectivity and in vitro growth of the Lyme disease-causing agent Borrelia burgdorferi. This is not surprising, considering B. burgdorferi complex life cycle, residing in both in mammals and ticks, which requires a wide range of membrane proteins and short-lived cytosolic regulatory proteins to invade and persist in the host organism. In the current study, we have solved the crystal structure of the cytosolic BB0789 166 - 614, lacking both N-terminal transmembrane α-helices and the small periplasmic domain. The structure revealed the arrangement of the AAA+ ATPase and the zinc-dependent metalloprotease domains in a hexamer ring, which is essential for ATPase and proteolytic activity. The AAA+ domain was found in an ADP-bound state, while the protease domain showed coordination of a zinc ion by two histidine residues and one aspartic acid residue. The loop region that forms the central pore in the oligomer was poorly defined in the crystal structure and therefore predicted by AlphaFold to complement the missing structural details, providing a complete picture of the functionally relevant hexameric form of BB0789. We confirmed that BB0789 is functionally active, possessing both protease and ATPase activities, thus providing novel structural-functional insights into the protein, which is known to be absolutely necessary for B. burgdorferi to survive and cause Lyme disease.