Browsing by Author "Saksis, Rihards"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comparing the Microbiome of the Adenoids in Children with Secretory Otitis Media and Children without Middle Ear Effusion(2024-08) Sokolovs-Karijs, Oļegs; Briviba, Monta; Saksis, Rihards; Rozenberga, Maija; Bunka , Laura; Girotto , Francesca; Osīte, Jana; Reinis, Aigars; Sumeraga, Gunta; Krūmiņa, Angelika; Department of Otorhinolaryngology; Department of Biology and Microbiology; Department of InfectologyBackground: The adenoids, primary sites of microbial colonization in the upper airways, can influence the development of various conditions, including otitis media with effusion (OME). Alterations in the adenoid microbiota have been implicated in the pathogenesis of such conditions. Aim: This study aims to utilize 16S rRNA genetic sequencing to identify and compare the bacterial communities on the adenoid surfaces of children with OME and children with healthy middle ears. Additionally, we seek to assess the differences in bacterial diversity between these two groups. Materials and Methods: We collected adenoid surface swabs from forty children, divided into two groups: twenty samples from children with healthy middle ears and twenty samples from children with OME. The V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Alpha and beta diversity indices were calculated, and statistical analyses were performed to identify significant differences in bacterial composition. Results: Alpha diversity analysis, using Pielou’s index, revealed significantly greater evenness in the bacterial communities on the adenoid surfaces of the healthy ear group compared with the OME group. Beta diversity analysis indicated greater variability in the microbial composition of the OME group. The most common bacterial genera in both groups were Haemophilus, Fusobacterium, Streptococcus, Moraxella, and Peptostreptococcus. The healthy ear group was primarily dominated by Haemophilus and Streptococcus, whereas the OME group showed higher abundance of Fusobacterium and Peptostreptococcus. Additionally, the OME group exhibited statistically significant higher levels of Alloprevotella, Peptostreptococcus, Porphyromonas, Johnsonella, Parvimonas, and Bordetella compared with the healthy ear group. Conclusion: Our study identified significant differences in the bacterial composition and diversity on the adenoid surfaces of children with healthy middle ears and those with OME. The OME group exhibited greater microbial variability and higher abundances of specific bacterial genera. These findings suggest that the adenoid surface microbiota may play a role in the pathogenesis of OME. Further research with larger sample sizes and control groups is needed to validate these results and explore potential clinical applications.Item Identifying the Microbiome of the Adenoid Surface of Children Suffering from Otitis Media with Effusion and Children without Middle Ear Effusion Using 16S rRNA Genetic Sequencing(2023-08) Sokolovs-Karijs, Oļegs; Briviba, Monta; Saksis, Rihards; Rozenberga, Maija; Girotto , Francesca; Osīte, Jana; Reinis, Aigars; Sumeraga, Gunta; Krūmiņa, Angelika; Department of Otorhinolaryngology; Department of Infectology; Department of Biology and MicrobiologyBackground: The upper respiratory tract harbors diverse communities of commensal, symbiotic, and pathogenic organisms, originating from both the oral and nasopharyngeal microbiota. Among the primary sites of microbial colonization in the upper airways are the adenoids. Alterations in the adenoid microbiota have been implicated in the development of various conditions, including secretory otitis media. Aim: This study aims to employ 16S rRNA genetic sequencing to identify the most common bacteria present on the surface of adenoids in children with otitis media with effusion and compare them with children without pathologies in the tympanic cavity. Additionally, we seek to determine and compare the bacterial diversity in these two study groups. Materials and Methods: A total of nineteen samples from the adenoid surfaces were collected, comprising two groups: thirteen samples from children without middle ear effusion and six samples from children with secretory otitis media. The libraries of the V3–V4 hypervariable region of the bacterial 16S rRNA gene was made and sequenced using MiSeq platform. Results: The most prevalent phyla observed in both groups were Proteobacteria, Firmicutes, and Bacteroidetes. The most common bacterial genera identified in both groups were Haemophilus, Streptococcus, Moraxella, Fusobacterium, and Bordetella, with Fusobacterium and Moraxella being more prevalent in the groups that had no middle ear effusion, while Haemophulus and Streptococcus were more prevalent in the otitis media with effusion group, although not in a statistically significant way. Statistical analysis shows a trend towards bacterial composition and beta diversity being similar between the study groups; however, due to the limited sample size and unevenness between groups, we should approach this data with caution. Conclusion: The lack of prolific difference in bacterial composition between the study groups suggests that the role of the adenoid microbiome in the development of otitis media with effusion may be less significant.Item Medication for Acromegaly Reduces Expression of MUC16, MACC1 and GRHL2 in Pituitary Neuroendocrine Tumour Tissue(2021-02-15) Saksis, Rihards; Silamikelis, Ivars; Laksa, Pola; Megnis, Kaspars; Peculis, Raitis; Mandrika, Ilona; Rogoza, Olesja; Petrovska, Ramona; Balcere, Inga; Konrade, Ilze; Steina, Liva; Stukens, Janis; Breiksa, Austra; Nazarovs, Jurijs; Sokolovska, Jelizaveta; Pirags, Valdis; Klovins, Janis; Rovite, Vita; Rīga Stradiņš UniversityAcromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein–protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein–protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.Item An Overview of Adenoid Microbiome Using 16S rRNA Gene Sequencing-Based Metagenomic Analysis(2022-07-11) Sokolovs-Karijs, Oļegs; Briviba, Monta; Saksis, Rihards; Sumeraga, Gunta; Girotto , Francesca; Erts, Renars; Osīte, Jana; Krūmiņa, Angelika; Department of Otorhinolaryngology; Department of InfectologyBackground and Objectives: the upper respiratory tract harbors the highest bacterial density in the whole respiratory system. Adenoids, which are located in the nasopharynx, are a major site of bacterial colonies in the upper airways. Our goal was to use culture-independent molecular techniques to identify the breadth of bacterial diversity in the adenoid vegetations of children suffering from chronic rhinosinusitis and obstructive sleep apnea. Materials and methods: in total, 21 adenoid samples were investigated using amplification and sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene. Results: among the most common bacterial species found were Veillonella atypica, Fusobactrium nucelatum, Shaalia odontolytica, and Moraxella catarrhalis. Veillonella atypica and Fusbacterium nucelatum dominated the microbiome in all 21 samples, attributing to more than 60% of all detected genetic material. Conclusions: since both Veillonella atypica and Fusobacterium nucleatum are, predominantly, oral cavity and dental microorganisms, our findings may suggest oral microbiome migration deeper into the oropharynx and nasopharynx where these bacteria colonize adenoid vegetations.