Browsing by Author "Rezende, Rodrigo A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Nanotechnological strategies for biofabrication of human organs(2012) Rezende, Rodrigo A.; Azevedo, Fábio De Souza; Pereira, Frederico David; Kasyanov, Vladimir; Wen, Xuejun; De Silva, Jorge Vicente Lopes; Mironov, Vladimir; Institute of Anatomy and AnthropologyNanotechnology is a rapidly emerging technology dealing with so-called nanomaterials which at least in one dimension have size smaller than 100nm. One of the most potentially promising applications of nanotechnology is in the area of tissue engineering, including biofabrication of 3D human tissues and organs. This paper focused on demonstrating how nanomaterials with nanolevel size can contribute to development of 3D human tissues and organs which have macrolevel organization. Specific nanomaterials such as nanofibers and nanoparticles are discussed in the context of their application for biofabricating 3D human tissues and organs. Several examples of novel tissue and organ biofabrication technologies based on using novel nanomaterials are presented and their recent limitations are analyzed. A robotic device for fabrication of compliant composite electrospun vascular graft is described. The concept of self-assembling magnetic tissue spheroids as an intermediate structure between nano- and macrolevel organization and building blocks for biofabrication of complex 3D human tissues and organs is introduced. The design of in vivo robotic bioprinter based on this concept and magnetic levitation of tissue spheroids labeled with magnetic nanoparticles is presented. The challenges and future prospects of applying nanomaterials and nanotechnological strategies in organ biofabrication are outlined.Item Organ printing as an information technology(2015) Rezende, Rodrigo A.; Kasyanov, Vladimir; Mironov, Vladimir; Da Silva, Jorge Vicente Lopes; Rīga Stradiņš UniversityOrgan printing is defined as a layer by layer additive robotic computer-aided biofabrication of functional 3D organ constructs with using self-assembling tissue spheroids according to digital model. Information technology and computer-aided design softwares are instrumental in the transformation of virtual 3D bioimaging information about human tissue and organs into living biological reality during 3D bioprinting. Information technology enables design blueprints for bioprinting of human organs as well as predictive computer simulation both printing and post-printing processes. 3D bioprinting is now considered as an emerging information technology and the effective application of existing information technology tools and development of new technological platforms such as human tissue and organ informatics, design automation, virtual human organs, virtual organ biofabrication line, mathematical modeling and predictive computer simulations of bioprinted tissue fusion and maturation is an important technological imperative for advancing organ bioprinting.