Browsing by Author "Pontaga, Inese"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Comparison of Latvian Qualified Basketball and Handball Players Performance(Rēzeknes Tehnoloģiju akadēmija, 2018) Pontaga, Inese; Zidens, Janis; Lubkina, V.; Ušča, S.; Zvaigzne, A.; Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics; Department of Sport GamesItem Fatness and thermoregulation of qualified rugby players(EDP Sciences, 2019) Pontaga, Inese; Liepina, Jekaterina; Kažoka, Dzintra; Umbraško, Silvija; Berkis, U.; Vilka, L.; Latvian Academy of Sport Education (LASE); Department of MorphologyA large body size and mass are advantages in rugby. The desire to gain weight can bring players to become overweight or obese. This can worsen their thermoregulation and health risks. The aim was to evaluate anthropometric characteristics and to determine the effect of additional body fat percentage on sweat loss during play-match in male rugby players. Nineteen qualified male rugby players were tested during play-match. The age, height, body mass, body mass index (BMI) and body fat percent of participants were: 29 ± 6 years, 183 ± 7 cm, 96.86 ± 12.88 kg, 29.07 ± 3.90 kg/m2, 20.52 ± 5.64%, respectively. The skin fold thickness measurement was used to assess body fat percent. Body mass loss was detected by weighting. The mean BMI was 26.18 ± 2.37 (kg/m2) and the body fat 15.87 ± 3.97% in backs. Forwards were significantly heavier and had BMI 31.18 ± 3.44 (kg/m2) (p = 0.002) and the body fat 23.91 ± 4.02% (p < 0.001). The mean body mass decrease in the playmatch was 1.83 ± 0.84%. The mean sweating intensity was 2.24 ± 1.07 l/h, but individual varied among players in very wide range (1.12–6.16 l/h). Relationships between the body fat percentage and sweating intensity was not determined (p > 0.05). Recommendation is to increase the volume of regular strength training, to correct the diet and liquid consumption.Item Organisma hidratācija sporta spēļu pārstāvjiem. Promocijas darba kopsavilkums / Body Hydration in Sports Game Players. Summary of the Doctoral Thesis(Latvian Academy of Sport Education, 2015) Voitkeviča, Lilita; Pontaga, Inese; Ööpik, VahurA universal method for determining the level of body hydration does not exist. The body hydration status cannot be estimated on the basis of a single analysis, for example, by determining the total body water. So there is a need to elaborate a relatively inexpensive method for determining the level of body hydration which can be performed using portative equipment to allow it to be used in a stadium or in a sports hall. Methods with higher accuracy (total body water determination with radioactive isotopes, determination of blood plasma osmolality etc.) are not appropriate for use outside the laboratories. Therefore it is necessary to choose those methods for determination of body hydration status that can be used in field conditions and give opportunity to assess body hydration status sufficiently precisely. Determination of urine specific gravity (USG) fits those criteria. Urine specific gravity can be determined by using three methods of fast evaluation: hydrometry, refractometry and reagent test strips. Stuempfle and Drury (2003) compared the accuracy of these methods by testing representatives of collegiate wrestlers before and during competition and found refractometry to be the only accurate method to determine the urine specific gravity; in case of hydrometry 28% of results were false positive, 2% - false negative, but in case of reagent test strips - 15% of results were false positive, 9%-false negative. It has been widely recognised that urine specific gravity over 1.020 is associated with hypohydration of the body, referring to data provided by the American Medical Society for Sports Medicine (Sawka et al. 2007) and National Collegiate Athletic Association (2003). Another indicator of hydration of the body is urine osmolality, and there is a close correlation between the USG and urine osmolality (r value ranges from 0.916 to 0.995) (Armstrong et al., 1994, Stover et al., 2006, Ööpik et al., 2013). However, the urine osmolality threshold for hypohydration varies among sources: starting from >586mOsm/kg and reaching up to >800mOsm/kg (Bartok et al., 2004, Sawka et al., 2007, Oppliger et al., 2005). Therefore USG of 1.020 or a particular value of urine osmolality cannot be used as a universal threshold value for anyone. This problem is still unsolved. These values are determined by Furthermore, cultural and ethnical differences may occur in urinary indices of hydration status. For example, it has been found that Japanese have a mean 24h urine osmolality of 900 mOsm/kg and Germans 801 mOsm/kg, but Polish and Kenyan people only 392 mOsm/kg (Manz, Wentz, 2003). The urine osmolality of black men and women has been found to be significantly higher than that of white men and women living in the same area (Bankir, Perucca, Weinberg, 2007). Creatinine and albumin concentrations in urine are higher for men and blacks compared to women and whites (Jacobs et al., 2002). Therefore, the thresholds of USG and urine osmolality should be interpreted with caution for athletes originating from different countries and possessing different ethnical or cultural backgrounds. Athletes also differ in terms of nutrition, the intake of salt and fluid or limitations of these. Consequently, the level of hydration before, during and after exercises may differ considerably between individual athletes (Maughan, Shirreffs, 2008). Athletes with higher muscle mass should have higher value of creatinine in urine and, therefore, may also exhibit higher urine specific gravity. It has been suggested to measure the pre-training level of hydration of the athlete's body by estimating the frequency and volume of urination, taking into account the colour, specific gravity and osmolality of urine. In this doctoral thesis the following scale will be used: USG<1.020 - euhydration, USG 1.020- 1.029 mild hypohydration and USG≥1.030 serious hypohydration. The amount of dehydration during the performance should be estimated by weighing athletes and the sweating intensity is calculated on the basis of fluid intake, urine excretion volume and changes in body mass; sodium loss can be determined by collecting and analysing the sweat samples (Maughan and Shirreffs, 2010). Body hydration status influences aerobic capacity and psychomotor performance of athletes (Mendez-Villanueva, Fernandez-Fernandez, Bishop, 2007). A moderate dehydration (water loss that causes body mass loss by 1.5- 2%) may significantly reduce physical performance and psychological condition of football players (Edwards et al., 2007). The performance of athletes is remarkably influenced by dehydration of body, which is especially important in sports where the performance lasts longer than an hour, including sports games, for example, in summertime about 0.99 – 1.93 litres of fluid (mean 1.46 litres) are lost during a football training, whereas during a training in winter 0.71-1.77 (mean 1.13) litres of fluid are lost (Sawka et al., 2007). Loss of fluid during training or competition is significantly influenced by the environmental factors, especially in case of outdoor sports activities, (football and rugby), which take place in an open stadium. Therefore, the sweating intensity of football and rugby players varies according to the weather conditions like air temperature, humidity and wind velocity. Hydration status could be considered especially important in sports where the activities last longer than a hour. For example, in summertime about 0.99 -1.93 litres of fluid (mean 1.46 litres) are lost during football training; whereas fluid loss during wintertime training is 0.71-1.77 (mean 1.13) litres (Sawka et al., 2007). Fluid intake cannot be based solely on the subjective feeling of thirst because that will ensure only about a half of the necessary intake, yet only a mild loss of fluid accounting for only 1-2% of body mass reduction may considerably influence the physical performance and working capacity of athletes (Casa et al., 2000). Changes in environmental temperature caused by alternation of seasons might influence athlete's hydration status, but it is investigated only in limited number of research works in the world. To prevent a significant dehydration during exercise it is advisable to increase the intake of fluid and mineral salts already a few hours before the training or competition, depending on the type of expected activity (Sawka et al., 2007). Maughan et al. (2005) observed a mild hypohydration (urine osmolality over 900 mOsm/kg) in 35% of elite football players preparing for a training session in cold weather. Da Silva et al. (2011) studied Brasilian elite junior football players in the period of three days in a hot climate (27.6-33.1°C) and stated hypohydratation in 45-85% of players in different days prior to training. Significant body mass loss typically observed during football training (Sawka et al, 2007) suggests that athletes are not able to compensate pre-training hypohydration by ingesting fluids during a training session. Therefore, it is essential to develop a fluid intake strategy before and during competitions for football players and representatives of other team sports and to educate them accordingly. That is why it is important to estimate the level of body hydration of players already before the training or the game in order to adjust the intake of fluid during exercises. It would be advisable to determine the level of hydration of the body also after training or game in order to evaluate the volume of the necessary fluid intake during the recovery period. Furthermore, sweating rate is determined by genetic factors (for some people the sweat glands are more densely distributed in the skin, therefore the level of sweating is higher), level of hydration of the body, acclimatization process depending on the weather, physical performance (the more trained the person is, the more effective is the cooling system of the body while doing workout) (Logan-Sprenger, Palmer, Spriet, 2011). There is no standardized approach for determining body hydration status in athletes. and which values should be used for each parameter (for example, there are different scales used for USG values) and there is no agreement about body rehydration, each person has to make his own choose which methods to use to determine hydration status, based on testing abilities, costs and precision. Nevertheless, a method suitable for assessing athletes' hydration status in field conditions should be comparatively cheap, simple and time-efficient. It should provide reliable information, but not to require highly qualified personnel. In this work pre- and post-training body hydration level of different sports game athletes will be estimated (based on urine specific gravity, urine osmolality and body mass changes. In addition to that, individual recommendations for rehydration will be proposed according to the results. Sports games which are practiced in outdoor conditions (football and rugby) were included in this research, considering that in these players body hydration status, sweating rate and performance are more influenced by weather than in those athletes who play indoor sports games, for example, volleyball or basketball. Ice hockey players were also included because hockey is the fastest team sport and the players wear special equipment that reduces the evaporation of sweat from the skin. Both of these factors increase the risk of dehydration during training and play match. .Item Organisma hidratācija sporta spēļu pārstāvjiem. Promocijas darbs(Latvijas Sporta pedagoģijas akadēmija, 2015) Voitkeviča, Lilita; Pontaga, Inese; Ööpik, VahurVienas universālas metodes ķermeņa hidratācijas pakāpes noteikšanai nav, to nevar izdarīt pēc tikai vienas analīzes, piemēram, pēc totālā ūdens daudzuma noteikšanas ķermenī, tāpēc nepieciešams izveidot metodiku organisma hidratācijas pakāpes noteikšanai, kas būtu salīdzinoši lēta un izmantojot portatīvu aparatūru, lai to varētu izmantot stadionā vai sporta zālē. Metodes ar lielāku precizitāti (kopējā ūdens daudzuma noteikšana organismā ar radioaktīvo izotopu metodi, asins plazmas osmolaritātes noteikšana u.c.) nav piemērotas izmantošanai ārpus laboratorijas. Tāpēc ir svarīgi izvēlēties tādas organisma hidratācijas statusa noteikšanas metodes, kuras vienlaicīgi ir gan izmantojamas lauka apstākļos, gan arī dod iespēju pietiekoši precīzi raksturot organisma hidratācijas statusu. Šiem kritērijiem atbilst urīna īpatnējā svara noteikšanas metode. Urīna īpatnējā svara noteikšanai ir iespējams izmantot trīs veidu ātrās noteikšanas metodes: hidrometrija, refraktometrija un reaģentu stripi. Stuempfle, Drury (2003) salīdzināja šo metožu precizitāti testējot cīņas sporta veida pārstāvjus pirms sacensībām un to laikā un konstatēja, ka vienīgā precīzā urīna īpatnējā svara noteikšanas metode ir refraktometrija, izmantojot hidrometriju 28 % no rezultātiem bija viltus pozitīvi un 2% - viltus negatīvi, bet ar reaģentu stripiem 15% rezultātu bija viltus pozitīvi un 9% - viltus negatīvi. Pasaulē plaši atzīta urīna īpatnējā svara (UIS) robežvērtība, kuras pārsniegšana ir saistīta ar organisma hipohidratāciju, ir UIS lielāks par 1,020 pēc Amerikāņu Sporta medicīnas asociācijas (Sawka et al., 2007) un Nacionālās koledžas atlētu asociācijas (2003) datiem. Otrs organisma hidratācijas rādītājs ir urīna osmolaritāte. Starp UIS un urīna osmolaritātes rādītājiem ir konstatēta cieša korelācija (r variē robežās no 0,916 līdz 0,995) (Armstrong et al., 1994, Stover et al., 2006, Ööpik et al., 2013). Urīna osmolaritātes robežvērtība, kas saistīta ar organisma hipohidratāciju pēc dažādu autoru datiem atšķiras: sākot no >586 mOsm/kg līdz >800 mOsm/kg (Bartok et al., 2004, Sawka et al., 2007, Oppliger et al., 2005). Tāpēc UÏS vērtību 1,020 vai noteiktu urīra osmolaritātes vērtību nevar uzskatīt par universālu robežskaitli jebkuram cilvēkam, pasaulē šis jautājums līdz šim nav izpētīts. Šos lielumus nosaka starpkulturālās un etniskās cilvēku atšķirības. Piemēram, japāņiem ir konstatēta diennakts urīna vidējā osmolaritāte 900 mOsm/kg, vāciešiem tā bija 801 mOsm/kg, bet poļiem un kenijiešiem - tikai 392 mOsm/kg (Manz, Wentz. 2003). Melnās rases vīriešiem un sievietēm ir konstatēta ticami augstāka urīna osmolaritāte nekā baltajiem vīriešiem un sievietēm, kas dzīvo vienā un tajā pašā apvidū (Bankir, Perucca, Weinberg, 2007). Vīriešiem un melnās rases pārstāvjiem urīnā ir lielāka kreatinīna un albumīnu koncentrācija nekā sievietēm un baltās rases pārstāvjiem (Jacobs et al., 2002). Tāpēc UIS un osmolaritātes robežvērtības ir jāvērtē piesardzīgi sportistiem, kas dzīvo dažādās valstīs un pieder dažādām etniskajām grupām. Dažādi sportisti atšķiras savā starpā pēc uztura, vārāmās sāls un šķidruma uzņemšanas vai tā ierobežošanas īpatnībām. Tāpēc pirms sacensībām, to laikā un atjaunošanās periodā sportistu organisma hidratācijas pakāpe un nātrija sāļu zudums individuāli stipri variē (Maughan, Shirreffs, 2008). Arī atlētiem ar lielāku skeleta muskuļu masu vajadzētu būt lielākam kreatinīna daudzumam urīnā un lielākam urīna īpatnējam svaram. Pirms slodzes sportista organisma hidratācijas pakāpi iesaka novērtēt pēc urinēšanas biežuma un urīna tilpuma, ņemt vērā urīna krāsu, īpatnējo svaru un osmolaritāti. Promocijas darba pētījumā tiks lietota sekojoša skala: UIS<1,020 - eihidratācija, UIS 1,020-1,029 - mērena hipohidratācija un UÏS≥1,030 izteikta hipohidratācija. Organisma atūdeņošanos slodzes laikā iesaka noteikt, sportistus sverot, svīšanas intensitāti aprēķina pēc uzņemtā šķidruma daudzuma, izdalītā urīna tilpuma un ķermeņa masas izmaiņām, sāļu zudumu var noteikt, savācot un analizējot sviedru paraugus (Maughan, Shirreffs, 2010). Organisma hidratācijas pakāpe (ūdens daudzums organismā) nosaka tā aerobo izturību un spējas veikt psihomotoros testus (Mendez-Villanueva, Fernandez-Fernandez, Bishop, 2007). Piemēram, mērena organisma atūdeņošanās (ķermeņa masas zudums par 1,5-2% uz ūdens rēķina) ticami pasliktina futbolistu darbspējas un psiholoģisko stāvokli (Edwards et al., 2007). Sportistu darbspējas būtiski ietekmē organisma atūdeņošanās (dehidratācija), kas ir īpaši nozīmīgi sporta veidos, kur sacensības ilgst vairāk nekā stundu, tajā skaitā, sporta spēlēs, piemēram, futbolisti treniņa laikā vasarā zaudē 0,99-1,93 L šķidruma, vidēji 1,46 L, bet treniņa laikā ziemā – 0,71-1,77 L šķidruma, vidēji 1,13 L (Sawka et al., 2007). Šķidruma zudumu treniņa vai sporta spēles laikā būtiski ietekmē arējās vides apstākļi, it īpaši, sporta spēlēs, kas notiek stadionā zem klajas debess (futbolā, regbijā). Tāpēc futbolistu un regbistu svīšanas intensitāte mainās katru treniņu atkarībā no laika apstākļiem: gaisa temperatūras un mitruma, vēja ātruma. Uzņemot šķidrumu, nevar paļauties tikai uz cilvēka slāpju sajūtu, jo tādā gadījumā šķidrums tiks uzņemts apmēram divas reizes mazākā daudzumā nekā ir nepieciešams, bet jau neliela organisma atūdeņošanās, kuras rezultātā ķermeņa masa samazinās par 1,5-2%, ievērojami ietekmē sportista fiziskās īpašības un darbspējas (Casa et al., 2000). Ārējās vides temperatūras izmaiņas, mainoties gadalaikiem, varētu ietekmēt sportistu hidratācijas statusu, bet šādi pētījumi līdz šim pasaulē ir veikti ļoti ierobežoti. Lai fiziskas slodzes laikā nerastos izteikta sportista ķermeņa atūdeņošanās, iesaka jau vairākas stundas pirms slodzes papildus uzņemt ūdeni un minerālsāļus atkarībā no paredzamās fiziskās slodzes veida (Sawka et al., 2007). Piemēram, Maughan un līdzautori (2005) konstatēja mērenu hipohidratāciju (nepietiekamu ūdens daudzumu organismā) ar urīna osmolaritāti virs 900 mOsm/kg) 35% elitāro futbolistu, Da Silva un līdzautori (2011) novēroja elitāros pusaudžu vecuma Brazīlijas futbolistus trīs dažādās dienās karstos laika apstākļos (27,6- 33,1°C) un noteica, ka pirms treniņa dažādās dienās bija hipohidratēti 45-85% spēlētāju. Treniņa vai spēles laikā organisma hipohidratāciju nav iespējams kompensēt, jo spēlētāji slodzes laikā neatkarīgi no laika apstākļiem zaudē no 0,71 līdz 1,93 litrus šķidruma svīstot (Sawka et al., 2007). Futbolistiem un citiem sporta spēļu pārstāvjiem ļoti svarīga ir pirmssacensību un sacensību laika šķidruma uzņemšanas stratēģija un viņu izglītošana šajā jomā.Tāpēc būtu lietderīgi noteikt spēlētāju ķermeņa hidratāciju jau pirms treniņa vai spēles, lai varētu koriģēt šķidruma uzņemšanu fiziskas slodzes laikā. Noderīgi būtu noteikt organisma hidratāciju arī pēc treniņa vai spēles, lai aprēķinātu uzņemamā šķidruma tilpumu atjaunošanās periodā. Turklāt cilvēka svīšanas intensitāti nosaka iedzimtība (dažiem cilvēkiem ādā ir lielāks sviedru dziedzeru blīvums, un viņi vairāk svīst), organisma hidratācija, aklimatizācija laika apstākļiem, spēlētāja vispārējā izturība (jo trenētāks ir sportists, jo efektīvāk atdzesē ķermeni slodzē svīstot) (Logan- Sprenger, Palmer and Spriet, 2011). Tā kā pasaulē nav izveidots vienots standarts kā noteikt organisma hidratācijas statusu un kādām jābūt katra parametra vērtībām (piemēram, UÏS tiek izmantotas dažādas skalas hidratācijas stāvokļa raksturošanai), kā arī nav vienprātības par organisma rehidratāciju, katram cilvēkam pašam jāizdara izvēle pēc kādiem kritērijiem tiks noteikts hidratācijas statuss, ņemot vērā testēšanas iespējas, izmaksas un precizitāti. Nosakot sportistu hidratāciju lauka apstākļos svarīgi, lai veicamo testu skaits būtu minimāls, bet iegūtā informācija ar pietiekoši augstu ticamību un datu iegūšanai nebūtu nepieciešamas ļoti specifiskas prasmes. Darbā tiks novērtēts dažādu sporta spēļu pārstāvju organisma hidratācijas līmenis pirms un pēc treniņa (pēc urīna īpatnējā svara un osmolaritātes un ķermeņa masas izmaiņām), kā arī, balstoties uz iegūtajiem rezultātiem, tiks izveidotas rekomendācijas šķidruma uzņemšanai pēc treniņa. Pētījumam tika izvēlētas sporta spēles, kas norisinās stadionā (futbols un regbijs) un tāpēc spēlētāju ķermeņa hidratācija, svīšanas intensitāte un darbspējas ir pakļautas laika apstākļu izmaiņām lielākā mērā nekā tiem sporta spēļu pārstāvjiem, kas sacenšas sporta zālē, piemēram, volejbolistiem vai basketbolistiem. Hokejisti pētījumam tika izvēlēti, jo hokejs ir ātrākā sporta spēle un spēlētāji valkā speciālu ekipējumu, kas apgrūtina sviedru iztvaikošanu no ādas virsmas. Abi šie faktori pastiprina ķermeņa dehidratācijas risku treniņos un spēļu laikā.Item Pre-practice hydration status in soccer (football) players in a cool environment(2018-12-05) Kiitam, Urmo; Voitkevica, Lilita; Timpmann, Saima; Pontaga, Inese; Ereline, Jaan; Unt, Eve; Ööpik, Vahur; Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and InformaticsBackground and Objectives: Only a few studies have reported the pre-practice hydration status in soccer players (SPs) who train in a cool climate. The primary purpose of this study was to examine the hydration status of male semiprofessional SPs immediately before their regular training session in winter. The secondary purpose was to compare the urinary indices of the hydration status of Estonian and Latvian SPs. Materials and Methods: Pre-training urine samples were collected from 40 Estonian (age 22.1 ± 3.4 years, soccer training experience 13.7 ± 3.9 years) and 41 Latvian (age 20.8 ± 3.4 years, soccer training experience 13.3 ± 3.0 years) SPs and analyzed for urine specific gravity (USG). The average outdoor temperature during the sample collection period (January-March) was between -5.1 °C and 0.2 °C (Estonia) and -1.9 °C and -5.0 °C (Latvia). Results: The average pre-training USG of Estonian and Latvian SPs did not differ (P = 0.464). Pooling the data of Estonian and Latvian SPs yielded a mean USG value of 1.021 ± 0.007. Hypohydration (defined as a USG ≥ 1.020) was evident altogether in fifty SPs (61.7%) and one of them had a USG value greater than 1.030. Conclusions: Estonian and Latvian SPs do not differ in respect of USG and the prevalence of pre-training hypohydration is high in this athletic cohort. These findings suggest that SPs as well as their coaches, athletic trainers, and sports physicians should be better educated to recognize the importance of maintaining euhydration during the daily training routine in wintertime and to apply appropriate measures to avoid hypohydration.Item A Review of the Effect of Resistance Exercise on Development of Anaerobic and Balance Performance in Adolescent Footballers(2024-10-30) Pontaga, Inese; Sinulingga, Andrew Rinaldi; Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and InformaticsBackground: The resistance exercises underpin the strength and power development of muscle activation in adolescent footballers. Objective: The study purposed to review the effectiveness of different resistance exercise models on improving anaerobic and balance characteristics among young football players. Methods: A systematic search of Scopus, SPORT Discus, and the Web of Science was undertaken to identify the study content using a combination of searches related to resistance exercise, balance, and anaerobic performance. Titles and abstracts were used to search for keywords, and data were extracted using the subject characteristics, training intervention, measurement, and outcomes. Results: Fourteen studies were identified that investigated the effects of resistance programs on the anaerobic and balance characteristics. A combination of plyometric and regular football training significantly improved the anaerobic characteristics, and balance performance in young footballers. Based on high-quality evidence, anaerobic and balance performance enhancement appears after conducting resistance exercises for approximately eight weeks, with two to three sessions on alternate days a week. The volume consists of 2-3 sets per exercise, 6-12 repetitions per set, and intensity was classified as moderate to high, with one repetition maximum. Conclusion, Integrating resistance exercise into the regular training sessions improves the anaerobic performance of young footballers, such as jumping, sprinting, and changing direction, while improving balance ability, indicated by reducing the center of pressure area side-asymmetry and sway speed during unipedal and bipedal leg stance.Item Role of Hamstring Muscles in Knee Joint Stability Providing and Injury Prevention(Rēzeknes Tehnoloģiju akadēmija, 2016) Pontaga, Inese; Lubkina, Velta; Usca, Svetlana; Zvaigzne, Anda; Latvian Academy of Sport Education (LASE)The aim of our investigation was to determine the ratio of maximal torque values and the torques in the certain positions of range of movements (ROM) between hamstring (H) and quadriceps femoris (Q) muscles at medium and high velocity of movement in concentric (CC) and eccentric (ECC) action of hamstring muscles.The knee muscles of 15 amateur female short and middle distance runners were tested by the dynamometer system in the isokinetic movements with the angular velocity of 90º/s and 240º/s in CC and at the velocity of 90º/s in ECC H/ CC Q muscles contractions. The torque values produced by the muscles are detected at the different angular positions of the ROM with the step of 10º. The ratios of H/ Q muscles torques are calculated. The H/Q muscles maximal torques ratio is 0.51 ± 0.13 at the velocity of 90º/s in CC and 0.60 ± 0.09 in ECC H/ CC Q muscles contractions, and 0.59 ± 0.09 CC at the velocity of 240º/s. The H/Q maximal torques ratio and this ratio in the knee extreme extension and flexion at the ECC contraction of H is higher due to greater torques produced by the H in comparison with Q muscle. The H must be stronger to decelerate the thigh and lower leg extension in the late swing phase of running and to extend the hip in early stance phase to provide powerful sprint running and prevent the knee and H injury. The H/Q muscles torques ratio in extended knee positions are similar in medium (90º/s) and fast (240º/s) velocity of motions because CC action of H muscles cannot prevent extreme knee extension.