Browsing by Author "Plotniece, Aiva"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Item 1,1′-{[3,5-Bis((dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis[4-(anthracen-9-yl)pyridin-1-ium] Dibromide(2022-09) Ozolins, Reinis; Plotniece, Mara; Pajuste, Karlis; Putralis, Reinis; Pikun, Nadiia; Sobolev, Arkadij; Plotniece, Aiva; Rucins, Martins; Department of Pharmaceutical ChemistryA synthesis of a cationic moiety and fluorescent moieties containing amphiphilic 1,4-dihydropyridine (1,4-DHP) derivatives was performed starting with the Hantzsch-type cyclization of dodecyl acetoacetate, phenylaldehyde and ammonium acetate. Bromination of the 2,6-dimethyl groups of a parent 1,4-DHP compound, followed by nucleophilic substitution of bromine with 4-(anthracen-9-yl)pyridine, produced the desired 1,1′-{[3,5-bis((dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis[4-(anthracen-9-yl)pyridin-1-ium] dibromide. The obtained target compound was fully characterized by the IR, 1H NMR, 13C NMR and HRMS data. Studies of the self-assembling properties and characterization of the nanoparticles obtained by the ethanol injection method were performed using dynamic light scattering (DLS) measurements. DLS measurement data showed that 1,1′-{[3,5-bis((dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis[4-(anthracen-9-yl)pyridin-1-ium] dibromide produced liposomes that had average diameters of 200 nm when the samples were freshly prepared, and 140 nm after 7 days or 1 month storage. The PDI values of the samples were approximately 0.50 and their zeta-potential values were approximately 41 mV when the samples were freshly prepared, and 33 mV after storage. The obtained nanoparticles were stored at room temperature for one month and remained stable during that period. The mean molecular area of the cationic 1,4-DHP-anthracene hybrid 4 was 118 Å2, while the mean molecular area of the cationic 1,4-DHP 5 without anthracene substituents was only 83 Å2. The photoluminescence quantum yield (PLQY) value for the EtOH solution of the 1,4-DHP derivative 4 was 10.8%, but for the 1,4-DHP derivative 5 it was only 1.8%. These types of compounds could be used as synthetic lipids in the further development of prospective theranostic delivery systems.Item 1,1′-{[3,5-Bis(dodecyloxycarbonyl)-4-(naphthalen-2-yl)-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis{4-[(E)-2-(naphthalen-2-yl)vinyl]pyridin-1-ium}dibromide(2022-09) Rucins, Martins; Kaukulis, Martins; Plotniece, Aiva; Pajuste, Karlis; Pikun, Nadiia; Sobolev, ArkadijSynthesis of a double-charged cationic amphiphilic 1,4-dihydropyridine derivative with dodecyl ester groups at positions 3 and 5 of the 1,4-DHP ring was performed starting from Hantzsch type cyclization of dodecyl acetoacetate, 2-naphthaldehyde and ammonium acetate. Bromination of this compound followed by nucleophilic substitution of bromine with (E)-4-(2-(naphthalen-2-yl)vinyl)pyridine gave the desired cationic amphiphilic 1,1′-{[3,5-bis(dodecyloxycarbonyl)-4-(naph-thalen-2-yl)-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis{4-[(E)-2-(naphthalen-2-yl)vinyl]pyridin-1-ium}dibromide. The obtained target compound was fully characterized by IR, UV,1 H-NMR,13 C-NMR, HRMS and microanalysis. The characterization of the cationic 1,4-DHP nanoparticles in an aqueous solution was performed by DLS measurements. The obtained results showed that the compound formed nanoparticles with an average diameter of around 300 nm, a PDI value of around 490 and a zeta-potential of around 20 mV for freshly prepared samples. However, after one week of storage at room temperature, an aggregation of nanoparticles was detected.Item Contribution of molecular structure to self-assembling and biological properties of bifunctional lipid-like 4-(N-alkylpyridinium)-1,4-Dihydropyridines(2019-03) Rucins, Martins; Dimitrijevs, Pavels; Pajuste, Karlis; Petrichenko, Oksana; Jackevica, Ludmila; Gulbe, Anita; Kibilda, Signe; Smits, Krisjanis; Plotniece, Mara; Tirzite, Dace; Pajuste, Karlis; Sobolev, Arkadij; Liepins, Janis; Domracheva, Ilona; Plotniece, Aiva; Department of Pharmaceutical ChemistryThe design of nanoparticle delivery materials possessing biological activities is an attractive strategy for the development of various therapies. In this study, 11 cationic amphiphilic 4-(N-alkylpyridinium)-1,4-dihydropyridine (1,4-DHP) derivatives differing in alkyl chain length and propargyl moiety/ties number and position were selected for the study of their self-assembling properties, evaluation of their cytotoxicity in vitro and toxicity on microorganisms, and the characterisation of their interaction with phospholipids. These lipid-like 1,4-DHPs have been earlier proposed as promising nanocarriers for DNA delivery. We have revealed that the mean diameter of freshly prepared nanoparticles varied from 58 to 513 nm, depending upon the 4-(N-alkylpyridinium)-1,4-DHP structure. Additionally, we have confirmed that only nanoparticles formed by 4-(N-dodecylpyridinium)-1,4-DHP derivatives 3 and 6, and by 4-(N-hexadecylpyridinium)-1,4-DHP derivatives 10 and 11 were stable after two weeks of storage. The nanoparticles of these compounds were found to be homogenous in size distribution, ranging from 124 to 221 nm. The polydispersity index (PDI) values of 1,4-DHPs samples 3, 6, 10, and 11 were in the range of 0.10 to 0.37. We also demonstrated that the nanoparticles formed by 4-(N-dodecylpyridinium)-1,4-DHP derivatives 3, 6, and 9, and 4-(N-hexadecylpyridinium)-1,4-DHP derivatives 10 and 11 had zeta-potentials from +26.07 mV (compound 6) to +62.80 mV (compound 11), indicating a strongly positive surface charge and confirming the relative electrostatic stability of these nanoparticle solutions. Transmission electron microscopy (TEM) images of nanoaggregates formed by 1,4-DHPs 3 and 11 confirmed liposome-like structures with diameters around 70 to 170 nm. The critical aggregation concentration (CAC) value interval for 4-(N-alkylpyridinium)-1,4-DHP was from 7.6 µM (compound 11) to 43.3 µM (compound 6). The tested 4-(N-alkylpyridinium)-1,4-DHP derivatives were able to quench the fluorescence of the binary 1,6-diphenyl-1,3,5-hexatriene (DPH)—1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) system, demonstrating hydrophobic interactions of 1,4-DHPs with phospholipids. Thus, 4-(N-dodecylpyridinium)-1,4-DHP derivative 3 quenched the fluorescence of the DPH–DPPC system more efficiently than the other 4-(N-alkylpyridinium)-1,4-DHP derivatives. Likewise the compound 3, also 4-(N-dodecylpyridinium)-1,4-DHP derivative 9 interacted with the phospholipids. Moreover, we have established that increasing the length of the alkyl chain at the quaternised nitrogen of the 4-(N-alkylpyridinium)-1,4-DHP molecule or the introduction of propargyl moieties in the 1,4-DHP molecule significantly influences the cytotoxicity on HT-1080 (human fibrosarcoma) and MH-22A (mouse hepatocarcinoma) cell lines, as well as the estimated basal cytotoxicity. Additionally, it was demonstrated that the toxicity of the 4-(N-alkylpyridinium)-1,4-DHP derivatives on the Gram-positive and Gram-negative bacteria species and eukaryotic microorganism depended on the presence of the alkyl chain length at the N-alkyl pyridinium moiety, as well as the number of propargyl groups. These lipid-like compounds may be proposed for the further development of drug formulations to be used in cancer treatment.Item Data for characterisation of nanoformulations formed by cationic 1,4-dihydopyridine and calix[4]arene compositions(2022-04) Rucins, Martins; Rodik, Roman; Plotniece, Aiva; Pikun, Nadiia; Plotniece, Mara; Sobolev, Arkadij; Kalchenko, Vitaly; Pajuste, Karlis; Department of Pharmaceutical ChemistryIn this data file the characterisation of nanoformulations obtained from calix[4]arene/1,4-dihydropyridine (1,4-DHP) compositions in the various component ratio in an aqueous medium was performed by dynamic light scattering (DLS) technique. The hydrodynamic diameters of nanoparticle main population, polydispersity index and stability of nanoformulation were determined. In this article provided data are directly related to the previously published research articles – “Gene delivery agents possessing antiradical activity: Self-assembling cationic amphiphilic 1,4-dihydropyridine derivatives” [1], and “Studies of the physicochemical and structural properties of self-assembling cationic pyridine derivatives as gene delivery agents” [2] where was described synthesis, transfection activity of 1,1′-((3,5-bis((dodecyloxy)carbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl)bis(methylene))bis(pyridin-1-ium) dibromide presented in this data file; and with articles “Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery” [3] and “Self-aggregation in aqueous solution of amphiphilic cationic calix[4]arenes. Potential use as vectors and nanocarriers” [4] where was described synthesis and ability to condense DNA for also mentioned calix[4]arenes – 5,11,17,23-tetra-(3-methylimidazolium)-methylene-25,26,27,28-etradodecyloxycalix[4]arene tetrachloride, 5,11,17,23-tetra(N,N-dimethyl-N-hydroxyethylammonium)-methylene-25,26,27,28-tetradodecyloxycalix[4]arene tetrachloride and 5,11,17,23-tetra(N,N-dimethyl-N-hydroxyethylammonium)-methylene-25,26,27,28-tetrahexadecyloxycalix[4]arene tetrachloride. Information provided in this data file can be used in medicinal chemistry for development of novel synthetic lipid nanoformulations.Item Development of Self-Assembling bis-1,4-Dihydropyridines : Detailed Studies of Bromination of Four Methyl Groups and Bromine Nucleophilic Substitution(2024-01) Kaukulis, Martins; Rucins, Martins; Lacis, Davis; Plotniece, Aiva; Sobolev, Arkadij; Department of Pharmaceutical ChemistryOne of the most important steps in the synthesis of 1,4-dihydropyridine (1,4-DHP) amphiphiles is the bromination of methyl groups in positions 2 and 6 of the entire ring. However, up to now, only N-bromosuccinimide was mainly used for bromination 1,4-DHPs. In this work, the synthesis of bis-1,4-DHP derivatives with ethyl and dodecyl ester groups attached to 1,4-DHP ring at positions 3 and 5 was performed by Hantzsch synthesis. The experimental studies were carried out to find out the best conditions and the agent for the tetra bromination of bis-1,4-DHP methyl groups at positions 2 and 6. Four different brominating agents were screened. The use of pyridinium bromide–perbromide in ethyl acetate was found to be optimal for the bromination of methyl groups. The bromination reaction was followed by the synthesis of cationic pyridine moiety containing amphiphilic bis-1,4-DHP derivatives. By nucleophilic substitution of bromine with various substituted pyridines, 12 new amphiphilic bis-1,4-DHP derivatives were obtained. Evaluation of self-assembling properties of tetracationic bis-1,4-dihydropyridine derivatives by dynamic light scattering (DLS) measurements was also performed.Item Evaluation of physicochemical properties of amphiphilic 1,4-dihydropyridines and preparation of magnetoliposomes(2021-03) Petrichenko, Oksana; Plotniece, Aiva; Pajuste, Karlis; Rucins, Martins; Dimitrijevs, Pavels; Sobolev, Arkadij; Sprugis, Einars; Cēbers, Andrejs; Department of Pharmaceutical ChemistryThis study was focused on the estimation of the targeted modification of 1,4-DHP core with (1) different alkyl chain lengths at 3,5-ester moieties of 1,4-DHP (C12, C14 and C16 ); (2) N-substituent at position 1 of 1,4-DHP (N-H or N-CH3 ); (3) substituents of pyridinium moieties at positions 2 and 6 of 1,4-DHP (H, 4-CN and 3-Ph); (4) substituent at position 4 of 1,4-DHP (phenyl and napthyl) on physicochemical properties of the entire molecules and on the characteristics of the obtained magnetoliposomes formed by them. It was shown that thermal behavior of the tested 1,4-DHP amphiphiles was related to the alkyl chains length, the elongation of which decreased their transition temperatures. The properties of 1,4-DHP amphiphile monolayers and their polar head areas were determined. The packing parameters of amphiphiles were in the 0.43–0.55 range. It was demonstrated that the structure of 1,4-DHPs affected the physicochemical properties of compounds. “Empty” liposomes and magnetoliposomes were prepared from selected 1,4-DHP amphiphiles. It was shown that the variation of alkyl chains length or the change of substituents at positions 4 of 1,4-DHP did not show a significant influence on properties of liposomes.Item From Polymeric Nanoformulations to Polyphenols - Strategies for Enhancing the Efficacy and Drug Delivery of Gentamicin(2024-04) Bārzdiņa, Ance; Plotniece, Aiva; Sobolev, Arkadij; Pajuste, Karlis; Bandere, Dace; Brangule, Agnese; Department of Pharmaceutical ChemistryGentamicin is an essential broad-spectrum aminoglycoside antibiotic that is used in over 40 clinical conditions and has shown activity against a wide range of nosocomial, biofilm-forming, multi-drug resistant bacteria. Nevertheless, the low cellular penetration and serious side effects of gentamicin, as well as the fear of the development of antibacterial resistance, has led to a search for ways to circumvent these obstacles. This review provides an overview of the chemical and pharmacological properties of gentamicin and offers six different strategies (the isolation of specific types of gentamicin, encapsulation in polymeric nanoparticles, hydrophobization of the gentamicin molecule, and combinations of gentamicin with other antibiotics, polyphenols, and natural products) that aim to enhance the drug delivery and antibacterial activity of gentamicin. In addition, factors influencing the synthesis of gentamicin-loaded polymeric (poly (lactic-co-glycolic acid) (PLGA) and chitosan) nanoparticles and the methods used in drug release studies are discussed. Potential research directions and future perspectives for gentamicin-loaded drug delivery systems are given.Item High efficiency of alphaviral gene transfer in combination with 5-fluorouracil in a mouse mammary tumor model(2014-06-20) Zajakina, Anna; Vasilevska, Jelena; Zhulenkovs, Dmitry; Skrastina, Dace; Spaks, Artjoms; Plotniece, Aiva; Kozlovska, TatjanaBackground: The combination of virotherapy and chemotherapy may enable efficient tumor regression that would be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor model (4 T1).Methods: Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly luciferase.Results: Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase) expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with 5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression.Conclusions: Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU untreated mice. These results may have implications for efficient transgene delivery and the development of potent cancer treatment strategies using alphaviral vectors and 5-FU.Item Intramolecular C-H⋯O hydrogen bonding in 1,4-dihydropyridine derivatives(2011-09) Petrova, Marina; Muhamadejev, Ruslan; Vigante, Brigita; Cekavicus, Brigita; Plotniece, Aiva; Duburs, Gunars; Liepinsh, EdvardsThe diastereotopy of the methylene protons at positions 2 and 6 in 1,4-dihydropiridine derivatives with various substituents has been investigated. NMR spectroscopy and quantum chemistry calculations show that the CH⋯O intramolecular hydrogen bond is one of the factors amplifying the chemical shift differences in the 1H-NMR spectra.Item Selected strategies to fight pathogenic bacteria(2023-01-11) Plotniece, Aiva; Sobolev, Arkadij; Supuran, Claudiu T.; Carta, Fabrizio; Björkling, Fredrik; Franzyk, Henrik; Yli-Kauhaluoma, Jari; Augustyns, Koen; Cos, Paul; De Vooght, Linda; Govaerts, Matthias; Aizawa, Juliana; Tammela, Päivi; Žalubovskis, Raivis; Department of Pharmaceutical ChemistryNatural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.Item Styrylpyridinium Derivatives for Fluorescent Cell Imaging(2023-09) Putralis, Reinis; Korotkaja, Ksenija; Kaukulis, Martins; Rudevica, Zhanna; Jansons, Juris; Nilova, Olga; Rucins, Martins; Krasnova, Laura; Domracheva, Ilona; Plotniece, Mara; Pajuste, Karlis; Sobolev, Arkadij; Rumnieks, Felikss; Bekere, Laura; Zajakina, Anna; Plotniece, Aiva; Duburs, Gunars; Department of Pharmaceutical ChemistryA set of styrylpyridinium (SP) compounds was synthesised in order to study their spectroscopic and cell labelling properties. The compounds comprised different electron donating parts (julolidine, p-dimethylaminophenyl, p-methoxyphenyl, 3,4,5-trimethoxyphenyl), conjugated linkers (vinyl, divinyl), and an electron-withdrawing N-alkylpyridinium part. Geminal or bis-compounds incorporating two styrylpyridinium (bis-SP) moieties at the 1,3-trimethylene unit were synthesised. Compounds comprising a divinyl linker and powerful electron-donating julolidine donor parts possessed intensive fluorescence in the near-infrared region (maximum at ~760 nm). The compounds had rather high cytotoxicity towards the cancerous cell lines HT-1080 and MH-22A; at the same time, basal cytotoxicity towards the NIH3T3 fibroblast cell line ranged from toxic to harmful. SP compound 6e had IC50 values of 1.0 ± 0.03 µg/mL to the cell line HT-1080 and 0.4 µg/mL to MH-22A; however, the basal toxicity LD50 was 477 mg/kg (harmful). The compounds showed large Stokes’ shifts, including 195 nm for 6a,b, 240 nm for 6e, and 325 and 352 nm for 6d and 6c, respectively. The highest photoluminescence quantum yield (PLQY) values were observed for 6a,b, which were 15.1 and 12.2%, respectively. The PLQY values for the SP derivatives 6d,e (those with a julolidinyl moiety) were 0.5 and 0.7%, respectively. Cell staining with compound 6e revealed a strong fluorescent signal localised in the cell cytoplasm, whereas the cell nuclei were not stained. SP compound 6e possessed self-assembling properties and formed liposomes with an average diameter of 118 nm. The obtained novel data on near-infrared fluorescent probes could be useful for the development of biocompatible dyes for biomedical applications.Item Synthesis and characterisation of 1,1'-{[3,5-bis(Dodecyloxy-carbonyl)-4-(thiophen-3-yl)-1,4-dihydropyridine-2,6-diyl]bis-(methylene)}bis(pyridin-1-ium) dibromide(2022-03) Rucins, Martins; Pajuste, Karlis; Plotniece, Aiva; Pikun, Nadiia; Rodik, Roman; Vyshnevskiy, Sergiy; Sobolev, ArkadijIn the present work, construction of double-charged cationic amphiphilic 1,1′-{[3,5-bis(dodecyl¬oxy-carbonyl)-4-(thiophen-3-yl)-1,4-dihydropyridine-2,6-diyl]bis-(methylene)}bis(pyridin-1-ium) dibromide (7) was performed in four steps. Dodecyl 3-oxobutanoate (1) was condensed with thiophene-3-carbaldehyde (2) which was necessary for Hantzsch cyclisation dodecyl (E/Z)-3-oxo-2-(thiophen-3-ylmethylene)butanoate (3). Two-component Hantzsch type cyclisation of dodecyl (E/Z)-3-aminobut-2-enoate (4) and dodecyl (E/Z)-3-oxo-2-(thiophen-3-ylmethylene)butanoate (3) gave 3,5-bis(dodecyloxycarbonyl)-2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine (5). Bromination of compound 5 followed by nucleophilic substitution of bromine with pyridine gave the desired cationic amphiphilic 1,4-dihydropyridine 7. The obtained target compound 7 and new intermediates 3, 5 and 6 were fully characterised by IR, UV,1 H NMR,13 C NMR, HRMS or microanalysis. Characterisation of nanoparticles formed by the cationic 1,4-dihydropyridine 7 in an aqueous solution was performed by DLS measurements.Item Synthesis and Characterization of Novel Amphiphilic N-Benzyl 1,4-Dihydropyridine Derivatives—Evaluation of Lipid Monolayer and Self-Assembling Properties(2023-06) Krapivina, Anna; Lacis, Davis; Rucins, Martins; Plotniece, Mara; Pajuste, Karlis; Sobolev, Arkadij; Plotniece, Aiva; Department of Pharmaceutical ChemistryLiposomes and other nanoparticles have been widely studied as innovative nanomaterials because of their unique properties. Pyridinium salts, on the basis of 1,4-dihydropyridine (1,4-DHP) core, have gained significant attention due to their self-assembling properties and DNA delivery activity. This study aimed to synthesize and characterize original N-benzyl substituted 1,4-dihydropyridines and evaluate the influence on structure modifications on compound physicochemical and self-assembling properties. Studies of monolayers composed of 1,4-DHP amphiphiles revealed that the mean molecular areas values were dependent on the compound structure. Therefore, the introduction of N-benzyl substituent to the 1,4-DHP ring enlarged the mean molecular area by almost half. All nanoparticle samples obtained by ethanol injection method possessed positive surface charge and average diameter of 395–2570 nm. The structure of the cationic head-group affects the size of the formed nanoparticles. The diameter of lipoplexes formed by 1,4-DHP amphiphiles and mRNA at nitrogen/phosphate (N/P) charge ratios of 1, 2, and 5 were in the range of 139–2959 nm and were related to the structure of compound and N/P charge ratio. The preliminary results indicated that more prospective combination are the lipoplexes formed by pyridinium moieties containing N-unsubstituted 1,4-DHP amphiphile 1 and pyridinium or substituted pyridinium moieties containing N-benzyl 1,4-DHP amphiphiles 5a–c at N/P charge ratio of 5, which would be good candidates for potential application in gene therapy.Item Synthesis and comparative evaluation of novel cationic amphiphile C12-Man-Q as an efficient DNA delivery agent in vitro(2018) Apsite, Gunita; Timofejeva, Irena; Vezane, Aleksandra; Vigante, Brigita; Rucins, Martins; Sobolev, Arkadij; Plotniece, Mara; Pajuste, Karlis; Kozlovska, Tatjana; Plotniece, Aiva; Rīga Stradiņš UniversityNew amphiphilic 1,4-DHP derivative C12-Man-Q with remoted cationic moieties at positions 2 and 6 was synthesised to study DNA delivery activity. The results were compared with data obtained for cationic 1,4-DHP derivative D19, which is known to be the most efficient one among the previously tested 1,4-DHP amphiphiles. We analysed the effects of C12-Man-Q concentration, complexation media, and complex/cell contact time on the gene delivery effectiveness and cell viability. Transmission electron microscopy data confirms that lipoplexes formed by the compound C12-Man-Q were quite uniform, vesicular-like structures with sizes of about 50 nm, and lipoplexes produced by compound D19 were of irregular shapes, varied in size in the range of 25–80 nm. Additionally, confocal microscopy results revealed that both amphiphiles effectively delivered green fluorescent protein expression plasmid into BHK-21 cells and produced a fluorescent signal with satisfactory efficiency, although compound C12-Man-Q was more cytotoxic to the BHK-21 cells with an increase of concentration. It can be concluded that optimal conditions for C12-Man-Q lipoplexes delivery in BHK-21 cells were the serum free media without 0.15 M NaCl, at an N/P ratio of 0.9. Compound D19 showed higher transfection efficiency to transfect BHK-21 and Cos-7 cell lines, when transfecting active proliferating cells. Although D19 was not able to transfect all studied cell lines we propose that it could be cell type specific. The compound C12-Man-Q showed modest delivery activity in all used cell lines, and higher activity was obtained in the case of H2-35 and B16 cells. The transfection efficiency in cell lines MCF-7, HeLa, and Huh-7 appears to be comparable to the reference compound D19 and minimal in the HepG2 cell line.Item Synthesis and comparative evaluation of novel cationic amphiphile C12-Man-Q as an efficient DNA delivery agent in vitro(2018) Apsite, Gunita; Timofejeva, Irena; Vezane, Aleksandra; Vigante, Brigita; Rucins, Martins; Sobolev, Arkadij; Plotniece, Mara; Pajuste, Karlis; Kozlovska, Tatjana; Plotniece, Aiva; Rīga Stradiņš UniversityNew amphiphilic 1,4-DHP derivative C12-Man-Q with remoted cationic moieties at positions 2 and 6 was synthesised to study DNA delivery activity. The results were compared with data obtained for cationic 1,4-DHP derivative D19, which is known to be the most efficient one among the previously tested 1,4-DHP amphiphiles. We analysed the effects of C12-Man-Q concentration, complexation media, and complex/cell contact time on the gene delivery effectiveness and cell viability. Transmission electron microscopy data confirms that lipoplexes formed by the compound C12-Man-Q were quite uniform, vesicular-like structures with sizes of about 50 nm, and lipoplexes produced by compound D19 were of irregular shapes, varied in size in the range of 25–80 nm. Additionally, confocal microscopy results revealed that both amphiphiles effectively delivered green fluorescent protein expression plasmid into BHK-21 cells and produced a fluorescent signal with satisfactory efficiency, although compound C12-Man-Q was more cytotoxic to the BHK-21 cells with an increase of concentration. It can be concluded that optimal conditions for C12-Man-Q lipoplexes delivery in BHK-21 cells were the serum free media without 0.15 M NaCl, at an N/P ratio of 0.9. Compound D19 showed higher transfection efficiency to transfect BHK-21 and Cos-7 cell lines, when transfecting active proliferating cells. Although D19 was not able to transfect all studied cell lines we propose that it could be cell type specific. The compound C12-Man-Q showed modest delivery activity in all used cell lines, and higher activity was obtained in the case of H2-35 and B16 cells. The transfection efficiency in cell lines MCF-7, HeLa, and Huh-7 appears to be comparable to the reference compound D19 and minimal in the HepG2 cell line.Item Synthesis and Evaluation of Self-Assembling Properties of 3-(3,5-Difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium Iodides(2022-09) Pikun, Nadiia; Lacis, Davis; Sobolev, Arkadij; Rucins, Martins; Plotniece, Mara; Pajuste, Karlis; Plotniece, Aiva; Department of Pharmaceutical ChemistryA synthesis of 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides with ethyl or nonyl ester groups at positions 3 and 5 was performed. Treatment of the corresponding 2’,6’-dimethyl-1’,4’-dihydro-[3,4’-bipyridine]-3’,5’-dicarboxylates with Selectfluor® followed by quaternization of pyridine moiety in the obtained dialkyl 2,4-diacetyl-2,4-difluoro-3-(pyridin-3-yl)pentanedioates with methyl iodide gave the desired 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides. This type of compound would be useful as synthetic lipids for further development of the delivery systems. The obtained target compounds were fully characterized by1H NMR,19F NMR,13C NMR, HRMS, IR and UV data. The estimation of self-assembling properties and characterization of the nanoparticles obtained by ethanol solution injection in an aqueous media were performed by dynamic light scattering (DLS) measurements. DLS measurement data showed that 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide created liposomes with the average diameter of 300–400 nm and polydispersity index (PDI) value around 0.30–0.40, while 3-(3,5-difluoro-3,5-bis((ethyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide formed a heterogeneous sample with PDI value 1, which was not prospective for delivery system development.Item Use of pyridinium ionic liquids as catalysts for the synthesis of 3,5-bis(dodecyloxycarbonyl)-1,4-dihydropyridine derivative(2011) Pajuste, Karlis; Plotniece, Aiva; Kore, Kintija; Intenberga, Liva; Cekavicus, Brigita; Kaldre, Dainis; Duburs, Gunars; Sobolev, ArkadijThe synthesis of cationic amphiphilic 1,4-dihydropyridine derivative, potential gene delivery agent is achieved via an efficient multi-step sequence. The key step of this approach is a two-component Hantzsch type cyclisation of 3-oxo-2-[1-phenylmethylidene]-butyric acid dodecyl ester and 3-amino-but-2-enoic acid dodecyl ester utilising bis(2-hydroxyethyl)ether as a solvent and 1-butyl-4-methylpyridinium chloride as a catalyst. The 1,4-dihydropyridine derivative with long alkyl ester chains at positions 3 and 5 of the 1,4-DHP ring - 3,5-bis(dodecyloxycarbonyl)-2,6-dimethyl-4-phenyl-1,4-dihydropyridine was obtained in substantially higher yield with respect to classical Hantzsch synthesis. Bromination of this compound followed by nucleophilic substitution of bromine with pyridine gave the desired cationic amphiphilic 1,4-dihydropyridine.