Browsing by Author "Norvaisa, Inga"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of Factors Determining Patterns of Serum C-Reactive Protein Level Reduction in Response to Treatment Initiation in Patients with Drug-Susceptible Pulmonary Tuberculosis(2024-12) Kivrāne, Agnija; Ulanova, Viktorija; Grinberga, Solveiga; Sevostjanovs, Eduards; Vīksna, Anda; Ozere, Iveta; Bogdanova, Ineta; Simanovica, Ilze; Norvaisa, Inga; Pahirko, Leonora; Bandere, Dace; Ranka, Renāte; Research Professor (Tenured Professor) Group at the Faculty of Pharmacy; Department of Infectology; Department of Pharmaceutical ChemistryBackground: Serum C-reactive protein (CRP) levels vary depending on radiological and bacteriological findings at the time of tuberculosis (TB) diagnosis. However, the utility of this biomarker in monitoring response to anti-TB treatment and identifying patients at risk of treatment failure is not well established. Objectives: This study evaluated the impact of patients’ baseline characteristics and anti-TB drug plasma exposure on the early reduction in serum CRP levels and its relationship with treatment response. Methods: We enrolled 42 patients with drug-susceptible pulmonary TB, who received a standard six-month regimen. The plasma concentrations of four anti-TB drugs were analysed using LC-MS/MS. Clinically relevant data, including serum CRP levels before and 10–12 days after treatment initiation (CRP10–12d), were obtained from electronic medical records and patient questionnaires. Results: In 10–12 days, the median serum CRP level decreased from 21.9 to 6.4 mg/L. Lower body mass index, positive sputum-smear microscopy results, and lung cavitations at diagnosis were related to higher biomarker levels at both time points; smoking had a more pronounced effect on serum CRP10–12d levels. Variability in anti-TB drug plasma exposure did not significantly affect the reduction in serum CRP levels. The serum CRP10–12d levels, or fold change from the baseline, did not predict the time to sputum culture conversion. Conclusions: Disease severity and patient characteristics may influence the pattern of early CRP reduction, while anti-TB drug plasma exposure had no significant effect at this stage. These early changes in serum CRP levels were not a predictor of response to anti-TB therapy.Item Next-Generation Sequencing and Bioinformatics-Based Protocol for the Full-Length CYP2E1 Gene Polymorphism Analysis(2022) Igumnova, Viktorija; Kivrane, Agnija; Viksna, Anda; Norvaisa, Inga; Ranka, Renate; Department of Pharmaceutical Chemistry; Department of InfectologyIntroduction: Pharmacogenetics studies provide clinically relevant information on the identified associations between genetic variants and individual variability in drug response, which, in turn, offers great promise for guiding personalized drug therapy and clinical trial design. However, there is a lack of information concerning the evidence-based clinical annotations of specific CYP2E1 genetic variants. Aim: To design and evaluate the next-generation sequencing-based method for full-length CYP2E1 gene polymorphism analysis. Materials and Methods: Seven gene-specific oligonucleotide primer pairs targeting overlapping CYP2E1 gene fragments spanning all nine gene exons with interleaving introns, untranslated (UTR) and intergenic regions were designed. Human DNA samples (n = 3) were used as a training set to check the primer performance and to optimize the PCR conditions. The effectiveness of the developed target amplification and sequencing protocol was evaluated using the test set comprising human DNA samples (n = 3) obtained from tuberculosis patients. Sequencing data analysis was performed on the Galaxy online-based platform. Results: The sequencing data quality was sufficient for the detection of genetic variants dispersed throughout the CYP2E1 gene with a high degree of confidence in fully covered regions achieving optimal reading depth of the targeted fragment with high base call accuracy. Conclusion: Developed protocol can be applied in subpopulation-level association studies to determine whether single nucleotide variants (SNVs) or variant combinations from multiple regions of the CYP2E1 gene are of clinical significance.