Browsing by Author "Makrecka-Kuka, Marina"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice(2017-09-01) Liepinsh, Edgars; Makrecka-Kuka, Marina; Makarova, Elina; Volska, Kristine; Vilks, Karlis; Sevostjanovs, Eduards; Antone, Unigunde; Kuka, Janis; Vilskersts, Reinis; Lola, Daina; Loza, Einars; Grinberga, Solveiga; Dambrova, Maija; Faculty of PharmacyAcylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity.Item Decrease in Long-Chain Acylcarnitine Tissue Content Determines the Duration of and Correlates with the Cardioprotective Effect of Methyl-GBB(2017-08) Kuka, Janis; Makrecka-Kuka, Marina; Cirule, Helena; Grinberga, Solveiga; Sevostjanovs, Eduards; Dambrova, Maija; Liepinsh, Edgars; Faculty of PharmacyIschaemia in the heart is accompanied by the accumulation of long-chain acylcarnitines (LCACs) which is one of the multiple factors that contribute to the ischaemia–reperfusion damage development. Long-term pre-treatment that decreases carnitine and LCAC contents also reduces ischaemia–reperfusion (IR) damage; however, the duration of the post-treatment effects is not known. The aim of the study was to assess the post-treatment effects of the carnitine transport (OCTN2) inhibitor, methyl-GBB, on LCAC content and the duration of its cardioprotective effect. Male Wistar rats received methyl-GBB (5 mg/kg for 28 days), and the anti-infarction effects on Langendorff-perfused hearts and the acylcarnitine profile in cardiac tissues were measured up to 28 days following the end of the treatment. Methyl-GBB pre-treatment for 28 days decreased LCAC heart tissue content by 87%, and the infarct size was decreased by 57%. Fourteen days post-treatment, the LCAC content was still decreased by 69%, and the infarct size was decreased by 32% compared to Control. A significant Pearson correlation (r = 0.48, p = 0.026) was found between infarct size and LCAC tissue content in the methyl-GBB-treated rat hearts. The addition of 2 mM carnitine to isolated heart perfusate significantly diminished the methyl-GBB-induced decrease in LCACs and infarct size. In conclusion, the anti-infarction effect of methyl-GBB continues for at least 2 weeks post-treatment. No less than a 70% decrease in LCAC content is required to protect ischaemic heart tissues, and the decrease in LCAC levels defines the duration of the post-treatment cardioprotective effect of the OCTN2 inhibitor, methyl-GBB.Item Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury(2021-03-01) Dambrova, Maija; Zuurbier, Coert J.; Borutaite, Vilmante; Liepinsh, Edgars; Makrecka-Kuka, Marina; Rīga Stradiņš UniversityThe heart is the most metabolically flexible organ with respect to the use of substrates available in different states of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid-linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long-chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of this concept.Item Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats(2021-07-29) Kuka, Janis; Makrecka-Kuka, Marina; Vilks, Karlis; Korzh, Stanislava; Cirule, Helena; Sevostjanovs, Eduards; Grinberga, Solveiga; Dambrova, Maija; Liepinsh, Edgars; Faculty of PharmacyLong-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.Item Iodine deficiency in Latvia : Current status and need for national recommendations(2017-12) Konrade, Ilze; Kalere, Ieva; Strele, Ieva; Makrecka-Kuka, Marina; Veisa, Vija; Gavars, Didzis; Rezeberga, Dace; Pirags, Valdis; Lejnieks, Aivars; Gruntmanis, Ugis; Neimane, Lolita; Liepiņš, Edgars; Dambrova, Maija; Rīga Stradiņš UniversityIn the absence of a mandatory salt iodisation programme, two nationwide cross-sectional cluster surveys revealed persisting iodine deficiency among Latvian schoolchildren during the spring season and a noteworthy iodine deficiency in pregnant women in Latvia; these deficiencies warrant intervention. The consequences of mild-to-moderate iodine deficiency during pregnancy and lactation can adversely affect foetal brain development. Data from a Latvian population survey revealed the consumption of approximately 100 μg of iodine per day through foods and iodised salt. Therefore, strategies to increase the consumption of iodine-containing products should be implemented, particularly for children. In addition, to meet the increased iodine requirement during pregnancy, pregnant women should take daily supplements containing 150 μg iodine from the earliest time possible. All women of childbearing age should be advised to increase their dietary iodine intake by using iodised table salt and iodine-rich products: seafood, milk and milk products. For women with pre-existing thyroid pathologies, the medical decision should be considered on a case-by-case basis. Urinary iodine concentration monitoring among schoolchildren and pregnant women and neonatal thyrotropin registry analysis every five years would be an appropriate strategy for maintaining iodine intake within the interval that prevents iodine deficiency disorders.Item Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage(2021-12) Liepinsh, Edgars; Kuka, Janis; Vilks, Karlis; Svalbe, Baiba; Stelfa, Gundega; Vilskersts, Reinis; Sevostjanovs, Eduards; Goldins, Niks Ricards; Groma, Valerija; Grinberga, Solveiga; Plaas, Mario; Makrecka-Kuka, Marina; Dambrova, Maija; Rīga Stradiņš UniversityIncreased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.Item Pharmacological activation of PPARβ/δ preserves mitochondrial respiratory function in ischemia/reperfusion via stimulation of fatty acid oxidation-linked respiration and PGC-1α/NRF-1 signaling(2022-08-15) Papatheodorou, Ioanna; Makrecka-Kuka, Marina; Kuka, Janis; Liepinsh, Edgars; Dambrova, Maija; Lazou, Antigone; Faculty of PharmacyMyocardial ischemia/reperfusion (I/R) injury leads to significant impairment of cardiac function and remains the leading cause of morbidity and mortality worldwide. Activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) confers cardioprotection via pleiotropic effects including antioxidant and anti-inflammatory actions; however, the underlying mechanisms are not yet fully elucidated. The aim of this study was to investigate the effect of PPARβ/δ activation on myocardial mitochondrial respiratory function and link this effect with cardioprotection after ischemia/reperfusion (I/R). For this purpose, rats were treated with the PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo. Mitochondrial respiration and ROS production rates were determined using high-resolution fluororespirometry. Activation of PPARβ/δ did not alter mitochondrial respiratory function in the healthy heart, however, inhibition of PPARβ/δ reduced fatty acid oxidation (FAO) and complex II-linked mitochondrial respiration and shifted the substrate dependence away from succinate-related energy production and towards NADH. Activation of PPARβ/δ reduced mitochondrial stress during in vitro anoxia/reoxygenation. Furthermore, it preserved FAO-dependent mitochondrial respiration and lowered ROS production at oxidative phosphorylation (OXPHOS)-dependent state during ex vivo I/R. PPARβ/δ activation was also followed by increased mRNA expression of components of FAO -linked respiration and of transcription factors governing mitochondrial homeostasis (carnitine palmitoyl transferase 1b and 2-CPT-1b and CPT-2, electron transfer flavoprotein dehydrogenase -ETFDH, peroxisome proliferator-activated receptor gamma co-activator 1 alpha- PGC-1α and nuclear respiratory factor 1-NRF-1). In conclusion, activation of PPARβ/δ stimulated both FAO-linked respiration and PGC-1α/NRF -1 signaling and preserved mitochondrial respiratory function during I/R. These effects are associated with reduced infarct size.Item Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues(2017-12-01) Makrecka-Kuka, Marina; Sevostjanovs, Eduards; Vilks, Karlis; Volska, Kristine; Antone, Unigunde; Kuka, Janis; Makarova, Elina; Pugovics, Osvalds; Dambrova, Maija; Liepinsh, Edgars; Faculty of PharmacyIncreased plasma concentrations of acylcarnitines (ACs) are suggested as a marker of metabolism disorders. The aim of the present study was to clarify which tissues are responsible for changes in the AC pool in plasma. The concentrations of medium- and long-chain ACs were changing during the fed-fast cycle in rat heart, muscles and liver. After 60 min running exercise, AC content was increased in fasted mice muscles, but not in plasma or heart. After glucose bolus administration in fasted rats, the AC concentrations in plasma decreased after 30 min but then began to increase, while in the muscles and liver, the contents of medium- and long-chain ACs were unchanged or even increased. Only the heart showed a decrease in medium- and long-chain AC contents that was similar to that observed in plasma. In isolated rat heart, but not isolated-contracting mice muscles, the significant efflux of medium- and long-chain ACs was observed. The efflux was reduced by 40% after the addition of glucose and insulin to the perfusion solution. Overall, these results indicate that during fed-fast cycle shifting the heart determines the medium- and long-chain AC profile in plasma, due to a rapid response to the availability of circulating energy substrates.Item Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae(2015-08-28) Kalnins, Gints; Kuka, Janis; Grinberga, Solveiga; Makrecka-Kuka, Marina; Liepinsh, Edgars; Dambrova, Maija; Tars, KasparsCutC choline trimethylamine-lyase is an anaerobic bacterial glycyl radical enzyme (GRE) that cleaves choline to produce trimethylamine (TMA) and acetaldehyde. In humans, TMA is produced exclusively by the intestinal microbiota, and its metabolite, trimethylamine oxide, has been associated with a higher risk of cardiovascular diseases. Therefore, information about the three-dimensional structures of TMA-producing enzymes is important for microbiota-targeted drug discovery. We have cloned, expressed, and purified the CutC GRE and the activating enzyme CutD from Klebsiella pneumoniae, a representative of the human microbiota. We have determined the first crystal structures of both the choline-bound and choline-free forms of CutC and have discovered that binding of choline at the ligand-binding site triggers conformational changes in the enzyme structure, a feature that has not been observed for any other characterized GRE.