Browsing by Author "Kivrane, Agnija"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Assessment of Amikacin- and Capreomycin-Related Adverse Drug Reactions in Patients with Multidrug-Resistant Tuberculosis and Exploring the Role of Genetic Factors(2023-04) Freimane, Lauma; Barkāne, Linda; Kivrane, Agnija; Sadovska, Darja; Ulanova, Viktorija; Ranka, Renāte; Faculty of PharmacyFollowing the introduction of all-oral treatment regimens for patients with drug-resistant tuberculosis (TB), second-line injectable drug applications have been reduced in the last few years. However, they are still important for anti-TB therapy. This study aims to analyze the occurrence of amikacin- and capreomycin-related adverse drug reactions (ADR) in patients with multidrug-resistant tuberculosis (MDR-TB) and evaluate the role of multiple patient-, disease-, and therapy-related factors on the frequency of the observed adverse events. In addition, the possible role of genetic risk factors was studied by full-length mitochondrial DNA sequencing. Toward this aim, we retrospectively evaluated 47 patients with MDR-TB who received amikacin and/or capreomycin. In total, 16 (34.0%) patients developed ototoxicity and 13 (27.7%) developed nephrotoxicity, including 3 (6.4%) patients who experienced both adverse events. Ototoxicity development was more common in patients who received amikacin. No other factors showed a significant impact. Nephrotoxicity was likely associated with previous renal health impairment. Full mitochondrial genome sequencing did not reveal any specific ADR-associated variants, and results showed no differences in adverse event occurrence for any specific variants, mutation count, or mitochondrial haplogroup. The absence of the previously reported ototoxicity-related mtDNA variants in our patients with ototoxicity and nephrotoxicity highlighted the complex nature of the ADR occurrence.Item Development of a real-time PCR method for rapid diagnosis of canine babesiosis and anaplasmosis(2021-12) Kivrane, Agnija; Namina, Agne; Seleznova, Maija; Akopjana, Sarmite; Capligina, Valentina; Ranka, RenateBackground: Canine babesiosis and anaplasmosis, caused by Babesia canis and Anaplasma phagocytophilum, respectively, are significant tick-borne diseases in Baltic countries. Both diseases can be diagnosed on the basis of clinicopathological findings, by direct pathogen detection in blood smears or by indirect pathogen detection; however, because of high selectivity and specificity, molecular methods may be advantageous. The goal of this study was to develop a duplex real-time polymerase chain reaction (RT-PCR) method for the detection of B. canis and A. phagocytophilum in canine clinical samples. Methods: Sequence-based polymorphism analysis of genes encoding B. canis-specific merozoite surface protein Bc28.1 (Bc28.1) and A. phagocytophilum malate dehydrogenase (mdh) was performed on pathogen isolates present in Latvian domestic dogs. The obtained results were used to design a species-specific duplex RT-PCR assay. Results: The presence of three B. canis Bc28.1 gene sequence types was revealed in canine samples with a nonuniform geographical distribution, and two types of A. phagocytophilum mdh genes were detected. The novel duplex RT-PCR assay provided correct classification of samples positive and negative for B. canis and A. phagocytophilum. The analytical sensitivity of this assay was ten gene copies/ reaction for both pathogens. Conclusions: A novel duplex RT-PCR molecular method was developed for the detection of B. canis and A. phagocytophilum in canine clinical samples. Sequence variability of Bc28.1 and mdh genes indicated the genetic variability of B. canis and A. phagocytophilum isolates occurring in Latvian domestic dogs. Graphic Abstract: [Figure not available: see fulltext.].Item Development of rapid antigen test prototype for detection of SARS-CoV-2 in saliva samples(2022-02-25) Kivrane, Agnija; Igumnova, Viktorija; Liepina, Elza Elizabete; Skrastina, Dace; Leonciks, Ainars; Rudevica, Zanna; Kistkins, Svjatoslavs; Reinis, Aigars; Zilde, Anna; Kazaks, Andris; Ranka, Renate; Rīga Stradiņš UniversityBackground: The development of easy-to-perform diagnostic methods is highly important for detecting current coronavirus disease (COVID-19). This pilot study aimed at developing a lateral flow assay (LFA)- based test prototype to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in saliva samples. Methods: Mice were immunized using the recombinant receptor-binding domain (rRBD) of SARS-CoV-2 virus spike protein. The combinations of the obtained mouse anti-receptor-binding domain (RBD) polyclonal antibodies (PAbs) and several commercial antibodies directed against the SARS-CoV-2 spike protein were used for enzyme-linked immunosorbent assay (ELISA) to select antibody pairs for LFA. The antibody pairs were tested in a LFA format using saliva samples from individuals with early SARS-CoV-2 infection (n = 9). The diagnostic performance of the developed LFA was evaluated using saliva samples from hospitalized COVID-19 patients (n = 111); the median time from the onset of symptoms to sample collection was 10 days (0-24 days, interquartile range (IQR): 7-13). The reverse transcription-polymerase chain reaction (rRT-PCR) was used as a reference method. Results: Based on ELISA and preliminary LFA results, a combination of mouse anti-RBD PAbs (capture antibody) and rabbit anti-spike PAbs (detection antibody) was chosen for clinical analysis of sample. When compared with rRT-PCR results, LFA exhibited 26.5% sensitivity, 58.1% specificity, 50.0% positive prediction value (PPV), 33.3% negative prediction value (NPV), and 38.7% diagnostic accuracy. However, there was a reasonable improvement in assay specificity (85.7%) and PPV (91.7%) when samples were stratified based on the sampling time. Conclusion: The developed LFA assay demonstrated a potential of SARS-CoV-2 detection in saliva samples. Further technical assay improvements should be made to enhance diagnostic performance followed by a validation study in a larger cohort of both asymptomatic and symptomatic patients in the early stage of infection.Item Effect of NAT2, GSTM1 and CYP2E1 genetic polymorphisms on plasma concentration of isoniazid and its metabolites in patients with tuberculosis, and the assessment of exposure-response relationships(2024-03) Ulanova, Viktorija; Kivrane, Agnija; Viksna, Anda; Pahirko, Leonora; Freimane, Lauma; Sadovska, Darja; Ozere, Iveta; Cirule, Andra; Sevostjanovs, Eduards; Grinberga, Solveiga; Bandere, Dace; Ranka, Renate; Research Professor (Tenured Professor) Group at the Faculty of Pharmacy; Department of Pharmaceutical ChemistryObjectives: Isoniazid is a key drug in the chemotherapy of tuberculosis (TB), however, interindividual variability in pharmacokinetic parameters and drug plasma levels may affect drug responses including drug induced hepatotoxicity. The current study investigated the relationships between isoniazid exposure and isoniazid metabolism-related genetic factors in the context of occurrence of drug induced hepatotoxicity and TB treatment outcomes. Methods: Demographic characteristics and clinical information were collected in a prospective TB cohort study in Latvia ( N = 34). Time to sputum culture conversion (tSCC) was used as a treatment response marker. Blood plasma concentrations of isoniazid (INH) and its metabolites acetylisoniazid (AcINH) and isonicotinic acid (INA) were determined at three time points (pre-dose (0 h), 2 h and 6 h after drug intake) using liquid chromatography-tandem mass spectrometry. Genetic variations of three key INH-metabolizing enzymes (NAT2, CYP2E1, and GSTM1) were investigated by application PCR- and Next-generation sequencing-based methods. Depending on variables, group comparisons were performed by Student's t-test, one-way ANOVA, Mann-Whitney-Wilcoxon, and Kruskal-Wallis tests. Pearson correlation coefficient was calculated for the pairs of normally distributed variables; model with rank transformations were used for non-normally distributed variables. Time-to-event analysis was performed to analyze the tSCC data. The cumulative probability of tSCC was obtained using Kaplan-Meier estimators. Cox proportional hazards models were fitted to estimate hazard rate ratios of successful tSCC. Results: High TB treatment success rate (94.1%) was achieved despite the variability in INH exposure. Clinical and demographic factors were not associated with either tSCC, hepatotoxicity, or INH pharmacokinetics parameters. Correlations between plasma concentrations of INH and its metabolites were NAT2 phenotype-dependent, while GSTM1 genetic variants did not showed any effects. CYP2E1*6 (T > A) allelic variant was associated with INH pharmacokinetic parameters. Decreased level of AcINH was associated with hepatotoxicity, while decreased values of INA/INH and AcINH/INH were associated with month two sputum culture positivity. Conclusion: Our findings suggest that CYP2E1, but not GSTM1, significantly affects the INH pharmacokinetics along with NAT2. AcINH plasma level could serve as a biomarker for INH-related hepatotoxicity, and the inclusion of INH metabolite screening in TB therapeutic drug monitoring could be beneficial in clinical studies for determination of optimal dosing strategies.Item Exploring Variability in Rifampicin Plasma Exposure and Development of Anti-Tuberculosis Drug-Induced Liver Injury among Patients with Pulmonary Tuberculosis from the Pharmacogenetic Perspective(2024-03-12) Kivrane, Agnija; Ulanova, Viktorija; Grinberga, Solveiga; Sevostjanovs, Eduards; Viksna, Anda; Ozere, Iveta; Bogdanova, Ineta; Zolovs, Maksims; Ranka, Renate; Research Professor (Tenured Professor) Group at the Faculty of Pharmacy; Department of Infectology; Statistics UnitGenetic polymorphisms can exert a considerable impact on drug pharmacokinetics (PK) and the development of adverse drug reactions (ADR). However, the effect of genetic polymorphisms on the anti-tuberculosis (anti-TB) drug, and particularly rifampicin (RIF), exposure or anti-TB drug-induced liver injury (DILI) remains uncertain. Here, we evaluated the relationship between single nucleotide polymorphisms (SNPs) detected in the RIF pharmacogenes ( AADAC, SLCO1B1, SLCO1B3, ABCB1, and NR1I2) and RIF PK parameters, as well as anti-TB treatment-associated DILI. In total, the study enrolled 46 patients with drug-susceptible pulmonary TB. The RIF plasma concentration was measured using the LC-MS/MS method in the blood samples collected pre-dose and 2 and 6 h post-dose, whilst the DILI status was established using the results from blood biochemical analysis performed before and 10-12 days after treatment onset. The genotyping was conducted using a targeted NGS approach. After adjustment for confounders, the patients carrying the rs3732357 GA/AA genotype of the NR1I2 gene were found to have significantly lower RIF plasma AUC 0-6 h in comparison to those with GG genotype, while the difference in RIF plasma C max was insignificant. None of the analyzed SNPs was related to DILI. Hence, we are the first to report NR1I2 intronic SNP rs3732357 as the genetic component of variability in RIF exposure. Regarding anti-TB treatment-associated DILI, the other preexisting factors promoting this ADR should be considered.Item LC-MS/MS method for simultaneous quantification of the first-line anti-tuberculosis drugs and six primary metabolites in patient plasma : Implications for therapeutic drug monitoring(2021-11-15) Kivrane, Agnija; Grinberga, Solveiga; Sevostjanovs, Eduards; Igumnova, Viktorija; Pole, Ilva; Viksna, Anda; Bandere, Dace; Krams, Alvils; Cirule, Andra; Pugovics, Osvalds; Ranka, Renate; Rīga Stradiņš UniversityThe pharmacokinetic profiling of drug substances and corresponding metabolites in the biological matrix is one of the most informative tools for the treatment efficacy assessment. Therefore, to satisfy the need for comprehensive monitoring of anti-tuberculosis drugs in human plasma, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantification of first-line anti-tuberculosis drugs (ethambutol, isoniazid, pyrazinamide, and rifampicin) along with their six primary metabolites. Simple single-step protein precipitation with methanol was chosen as the most convenient sample pre-treatment method. Chromatographic separation of the ten analyte mixture was achieved within 10 minutes on a reverse-phase C8 column using mobile phase gradient mode. The multiple reaction monitoring mode (MRM) was used for analyte detection and quantification in patient samples. The chosen quantification ranges fully covered expected plasma concentrations. The method exhibited acceptable selectivity; the within- and between-run accuracy ranged from 87.2 to 113.6%, but within- and between-run precision was between 1.6 and 14.9% (at the LLOQ level CV < 20%). Although the response of the isonicotinic acid varied depending on the matrix source (CV 21.8%), validation results proved that such inconsistency does not affect the accuracy and precision of results. If stored at room temperature plasma samples should be processed within 4 h after collection, temporary storage at −20 °C up to 24 h is acceptable due to stability issues of analytes. The developed method was applied for the patient sample analysis (n = 34) receiving anti-tuberculosis treatment with the first-line drugs.Item Next-Generation Sequencing and Bioinformatics-Based Protocol for the Full-Length CYP2E1 Gene Polymorphism Analysis(2022) Igumnova, Viktorija; Kivrane, Agnija; Viksna, Anda; Norvaisa, Inga; Ranka, Renate; Department of Pharmaceutical Chemistry; Department of InfectologyIntroduction: Pharmacogenetics studies provide clinically relevant information on the identified associations between genetic variants and individual variability in drug response, which, in turn, offers great promise for guiding personalized drug therapy and clinical trial design. However, there is a lack of information concerning the evidence-based clinical annotations of specific CYP2E1 genetic variants. Aim: To design and evaluate the next-generation sequencing-based method for full-length CYP2E1 gene polymorphism analysis. Materials and Methods: Seven gene-specific oligonucleotide primer pairs targeting overlapping CYP2E1 gene fragments spanning all nine gene exons with interleaving introns, untranslated (UTR) and intergenic regions were designed. Human DNA samples (n = 3) were used as a training set to check the primer performance and to optimize the PCR conditions. The effectiveness of the developed target amplification and sequencing protocol was evaluated using the test set comprising human DNA samples (n = 3) obtained from tuberculosis patients. Sequencing data analysis was performed on the Galaxy online-based platform. Results: The sequencing data quality was sufficient for the detection of genetic variants dispersed throughout the CYP2E1 gene with a high degree of confidence in fully covered regions achieving optimal reading depth of the targeted fragment with high base call accuracy. Conclusion: Developed protocol can be applied in subpopulation-level association studies to determine whether single nucleotide variants (SNVs) or variant combinations from multiple regions of the CYP2E1 gene are of clinical significance.