Browsing by Author "Kazaks, Andris"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis(2018-12-01) Brangulis, Kalvis; Akopjana, Inara; Petrovskis, Ivars; Kazaks, Andris; Kraiczy, Peter; Tars, Kaspars; Department of Human Physiology and BiochemistryBorrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.Item Development of rapid antigen test prototype for detection of SARS-CoV-2 in saliva samples(2022-02-25) Kivrane, Agnija; Igumnova, Viktorija; Liepina, Elza Elizabete; Skrastina, Dace; Leonciks, Ainars; Rudevica, Zanna; Kistkins, Svjatoslavs; Reinis, Aigars; Zilde, Anna; Kazaks, Andris; Ranka, Renate; Rīga Stradiņš UniversityBackground: The development of easy-to-perform diagnostic methods is highly important for detecting current coronavirus disease (COVID-19). This pilot study aimed at developing a lateral flow assay (LFA)- based test prototype to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in saliva samples. Methods: Mice were immunized using the recombinant receptor-binding domain (rRBD) of SARS-CoV-2 virus spike protein. The combinations of the obtained mouse anti-receptor-binding domain (RBD) polyclonal antibodies (PAbs) and several commercial antibodies directed against the SARS-CoV-2 spike protein were used for enzyme-linked immunosorbent assay (ELISA) to select antibody pairs for LFA. The antibody pairs were tested in a LFA format using saliva samples from individuals with early SARS-CoV-2 infection (n = 9). The diagnostic performance of the developed LFA was evaluated using saliva samples from hospitalized COVID-19 patients (n = 111); the median time from the onset of symptoms to sample collection was 10 days (0-24 days, interquartile range (IQR): 7-13). The reverse transcription-polymerase chain reaction (rRT-PCR) was used as a reference method. Results: Based on ELISA and preliminary LFA results, a combination of mouse anti-RBD PAbs (capture antibody) and rabbit anti-spike PAbs (detection antibody) was chosen for clinical analysis of sample. When compared with rRT-PCR results, LFA exhibited 26.5% sensitivity, 58.1% specificity, 50.0% positive prediction value (PPV), 33.3% negative prediction value (NPV), and 38.7% diagnostic accuracy. However, there was a reasonable improvement in assay specificity (85.7%) and PPV (91.7%) when samples were stratified based on the sampling time. Conclusion: The developed LFA assay demonstrated a potential of SARS-CoV-2 detection in saliva samples. Further technical assay improvements should be made to enhance diagnostic performance followed by a validation study in a larger cohort of both asymptomatic and symptomatic patients in the early stage of infection.Item Structural characterization of CspZ, a complement regulator factor H and FHL-1 binding protein from Borrelia burgdorferi(2014-06) Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Bogans, Janis; Otikovs, Martins; Jaudzems, Kristaps; Ranka, Renate; Tars, Kaspars; Rīga Stradiņš UniversityBorrelia burgdorferi is the causative agent of Lyme disease and is found in two different types of hosts in nature - Ixodes ticks and various mammalian organisms. To initiate disease and survive in mammalian host organisms, B. burgdorferi must be able to transfer to a new host, proliferate, attach to different tissue and resist the immune response. To resist the host's immune response, B. burgdorferi produces at least five different outer surface proteins that can bind complement regulator factor H (CFH) and/or factor H-like protein 1 (CFHL-1). The crystal structures of two uniquely folded complement binding proteins, which belong to two distinct gene families and are not found in other bacteria, have been previously described. The crystal structure of the CFH and CFHL-1 binding protein CspZ (also known as BbCRASP-2 or BBH06) from B. burgdorferi, which belongs to a third gene family, is reported in this study. The structure reveals that the overall fold is different from the known structures of the other complement binding proteins in B. burgdorferi or other bacteria; this structure does not resemble the fold of any known protein deposited in the Protein Data Bank. The N-terminal part of the CspZ protein forms a four-helix bundle and has features similar to the FAT domain (focal adhesion targeting domain) and a related domain found in the vinculin/α-catenin family. By combining our findings from the crystal structure of CspZ with previous mutagenesis studies, we have identified a likely binding surface on CspZ for CFH and CFHL-1.Item Structural studies of chromosomally encoded outer surface lipoprotein BB0158 from Borrelia burgdorferi sensu stricto(2024-01) Brangulis, Kalvis; Akopjana, Inara; Bogans, Janis; Kazaks, Andris; Tars, KasparsLyme disease, or also known as Lyme borreliosis, is caused by the spirochetes belonging to the Borrelia burgdorferi sensu lato complex, which can enter the human body following the bite of an infected tick. Many membrane lipid-bound proteins, also known as lipoproteins, are located on the surface of B. burgdorferi sensu lato and play a crucial role in the spirochete to interact with its environment, whether in ticks or mammals. Since the spirochete needs to perform various tasks, such as resisting the host's immune system or spreading throughout the organism, it is not surprising that numerous surface proteins have been found to be essential for B. burgdorferi sensu lato complex bacteria in causing Lyme disease. In this study, we have determined (at 2.4 Å resolution) and characterized the 3D structure of BB0158, one of the few chromosomally encoded outer surface proteins from B. burgdorferi sensu stricto. BB0158 belongs to the paralogous gene family 44 (PFam44), consisting of four other members (BB0159, BBA04, BBE09 and BBK52). The characterization of BB0158, which appears to form a domain-swapped dimer, in conjunction with the characterization of the corresponding PFam44 members, certainly contribute to our understanding of B. burgdorferi sensu stricto proteins.