Browsing by Author "Igumnova, Viktorija"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Development of rapid antigen test prototype for detection of SARS-CoV-2 in saliva samples(2022-02-25) Kivrane, Agnija; Igumnova, Viktorija; Liepina, Elza Elizabete; Skrastina, Dace; Leonciks, Ainars; Rudevica, Zanna; Kistkins, Svjatoslavs; Reinis, Aigars; Zilde, Anna; Kazaks, Andris; Ranka, Renate; Rīga Stradiņš UniversityBackground: The development of easy-to-perform diagnostic methods is highly important for detecting current coronavirus disease (COVID-19). This pilot study aimed at developing a lateral flow assay (LFA)- based test prototype to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in saliva samples. Methods: Mice were immunized using the recombinant receptor-binding domain (rRBD) of SARS-CoV-2 virus spike protein. The combinations of the obtained mouse anti-receptor-binding domain (RBD) polyclonal antibodies (PAbs) and several commercial antibodies directed against the SARS-CoV-2 spike protein were used for enzyme-linked immunosorbent assay (ELISA) to select antibody pairs for LFA. The antibody pairs were tested in a LFA format using saliva samples from individuals with early SARS-CoV-2 infection (n = 9). The diagnostic performance of the developed LFA was evaluated using saliva samples from hospitalized COVID-19 patients (n = 111); the median time from the onset of symptoms to sample collection was 10 days (0-24 days, interquartile range (IQR): 7-13). The reverse transcription-polymerase chain reaction (rRT-PCR) was used as a reference method. Results: Based on ELISA and preliminary LFA results, a combination of mouse anti-RBD PAbs (capture antibody) and rabbit anti-spike PAbs (detection antibody) was chosen for clinical analysis of sample. When compared with rRT-PCR results, LFA exhibited 26.5% sensitivity, 58.1% specificity, 50.0% positive prediction value (PPV), 33.3% negative prediction value (NPV), and 38.7% diagnostic accuracy. However, there was a reasonable improvement in assay specificity (85.7%) and PPV (91.7%) when samples were stratified based on the sampling time. Conclusion: The developed LFA assay demonstrated a potential of SARS-CoV-2 detection in saliva samples. Further technical assay improvements should be made to enhance diagnostic performance followed by a validation study in a larger cohort of both asymptomatic and symptomatic patients in the early stage of infection.Item LC-MS/MS method for simultaneous quantification of the first-line anti-tuberculosis drugs and six primary metabolites in patient plasma : Implications for therapeutic drug monitoring(2021-11-15) Kivrane, Agnija; Grinberga, Solveiga; Sevostjanovs, Eduards; Igumnova, Viktorija; Pole, Ilva; Viksna, Anda; Bandere, Dace; Krams, Alvils; Cirule, Andra; Pugovics, Osvalds; Ranka, Renate; Rīga Stradiņš UniversityThe pharmacokinetic profiling of drug substances and corresponding metabolites in the biological matrix is one of the most informative tools for the treatment efficacy assessment. Therefore, to satisfy the need for comprehensive monitoring of anti-tuberculosis drugs in human plasma, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantification of first-line anti-tuberculosis drugs (ethambutol, isoniazid, pyrazinamide, and rifampicin) along with their six primary metabolites. Simple single-step protein precipitation with methanol was chosen as the most convenient sample pre-treatment method. Chromatographic separation of the ten analyte mixture was achieved within 10 minutes on a reverse-phase C8 column using mobile phase gradient mode. The multiple reaction monitoring mode (MRM) was used for analyte detection and quantification in patient samples. The chosen quantification ranges fully covered expected plasma concentrations. The method exhibited acceptable selectivity; the within- and between-run accuracy ranged from 87.2 to 113.6%, but within- and between-run precision was between 1.6 and 14.9% (at the LLOQ level CV < 20%). Although the response of the isonicotinic acid varied depending on the matrix source (CV 21.8%), validation results proved that such inconsistency does not affect the accuracy and precision of results. If stored at room temperature plasma samples should be processed within 4 h after collection, temporary storage at −20 °C up to 24 h is acceptable due to stability issues of analytes. The developed method was applied for the patient sample analysis (n = 34) receiving anti-tuberculosis treatment with the first-line drugs.Item Next-Generation Sequencing and Bioinformatics-Based Protocol for the Full-Length CYP2E1 Gene Polymorphism Analysis(2022) Igumnova, Viktorija; Kivrane, Agnija; Viksna, Anda; Norvaisa, Inga; Ranka, Renate; Department of Pharmaceutical Chemistry; Department of InfectologyIntroduction: Pharmacogenetics studies provide clinically relevant information on the identified associations between genetic variants and individual variability in drug response, which, in turn, offers great promise for guiding personalized drug therapy and clinical trial design. However, there is a lack of information concerning the evidence-based clinical annotations of specific CYP2E1 genetic variants. Aim: To design and evaluate the next-generation sequencing-based method for full-length CYP2E1 gene polymorphism analysis. Materials and Methods: Seven gene-specific oligonucleotide primer pairs targeting overlapping CYP2E1 gene fragments spanning all nine gene exons with interleaving introns, untranslated (UTR) and intergenic regions were designed. Human DNA samples (n = 3) were used as a training set to check the primer performance and to optimize the PCR conditions. The effectiveness of the developed target amplification and sequencing protocol was evaluated using the test set comprising human DNA samples (n = 3) obtained from tuberculosis patients. Sequencing data analysis was performed on the Galaxy online-based platform. Results: The sequencing data quality was sufficient for the detection of genetic variants dispersed throughout the CYP2E1 gene with a high degree of confidence in fully covered regions achieving optimal reading depth of the targeted fragment with high base call accuracy. Conclusion: Developed protocol can be applied in subpopulation-level association studies to determine whether single nucleotide variants (SNVs) or variant combinations from multiple regions of the CYP2E1 gene are of clinical significance.