Browsing by Author "Berga, Marta"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Exploring the Potential of Supercritical Fluid Extraction of Matricaria chamomilla White Ray Florets as a Source of Bioactive (Cosmetic) Ingredients(2023-05-12) Pastare, Laura; Berga, Marta; Kienkas, Liene; Boroduskis, Martins; Ramata-Stunda, Anna; Reihmane, Dace; Senkovs, Maris; Skudrins, Gundars; Nakurte, IlvaAromatic and medicinal plants are a great source of useful bioactive compounds for use in cosmetics, drugs, and dietary supplements. This study investigated the potential of using supercritical fluid extracts obtained from Matricaria chamomilla white ray florets, a kind of industrial herbal byproduct, as a source of bioactive cosmetic ingredients. Response surface methodology to optimize the supercritical fluid extraction process by analyzing the impact of pressure and temperature on yield and the main bioactive compound groups were used. High-throughput 96-well plate spectrophotometric methods were used to analyze the extracts for total phenols, flavonoids, tannins, and sugars, as well as their antioxidant capacity. Gas chromatography and liquid chromatography-mass spectrometry was used to determine the phytochemical composition of the extracts. The extracts were also analyzed for antimicrobial activity, cytotoxicity, phototoxicity, and melanin content. Statistical analysis was performed to establish correlations between the extracts and develop models to predict the targeted phytochemical recovery and chemical and biological activities. The results show that the extracts contained a diverse range of phytochemical classes and had cytotoxic, proliferation-reducing, and antimicrobial activities, making them potentially useful in cosmetic formulations. This study provides valuable insights for further research on the uses and mechanisms of action of these extracts.Item Flavonoids in the Spotlight : Bridging the Gap between Physicochemical Properties and Formulation Strategies(2023-10-03) Berga, Marta; Logviss, Konstantīns; Lauberte, Līga; Paulausks, Artūrs; Mohylyuk, Valentyn; Laboratory of Finished Dosage FormsFlavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly found in dietary supplements and herbal products. This review sums up the values of pKa, log P, solubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were compiled for various flavonoid subclasses, revealing variations in their physicochemical properties. The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the need for enabling formulation approaches to enhance their bioavailability and therapeutic potential. Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic. Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points, making them “brick dust” candidates. To improve solubility and absorption, strategies like size reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have been discussed.Item In Vitro Safety and Efficacy Evaluation of a Juniperus communis Callus Culture Extract and Matricaria recutita Processing Waste Extract Combination as a Cosmetic Ingredient(2024-01-18) Ramata-Stunda, Anna; Boroduskis, Martins; Pastare, Laura; Berga, Marta; Kienkas, Liene; Patetko, Liene; Skudrins, Gundars; Reihmane, Dace; Nakurte, IlvaFor skin health promotion and cosmetic applications, combinations of plant cell extracts are extensively utilized. As most natural ingredient suppliers offer crude extracts from individual plants or specific isolated compounds, the potential interactions between them are assessed in the development phase of cosmetic products. The industry seeks extract combinations that have undergone optimization and scrutiny for their bioactivities. This study presents a combination of two sustainably produced botanical ingredients and outlines their chemical composition, in vitro safety, and bioactivity for skin health enhancement. The amalgamation comprises the extract of Matricaria recutita processing waste and the extract from Juniperus communis callus culture. Chemical analysis revealed distinct compounds within the extracts, and their combination led to a broader array of potentially synergistic compounds. In vitro assessments on skin cells demonstrated that the combination possesses robust antioxidant properties and the ability to stimulate keratinocyte proliferation, along with regulating collagen type I and matrix metalloproteinase 1 (MMP-1) production by dermal fibroblasts. The identified traits of this combination render it an appealing cosmetic component. To the best of our knowledge, this represents the first case when the extracts derived from medicinal plant processing waste and biotechnological plant cell cultivation processes have been combined and evaluated for their bioactivity.Item Taste-Masked Pellets of Warfarin Sodium : Formulation towards the Dose Personalisation(2024-05) Kovalenko, Lakija; Kukuls, Kirils; Berga, Marta; Mohylyuk, Valentyn; Laboratory of Finished Dosage FormsThe bitter drug, warfarin, has a narrow therapeutic index (NTI) and is used in paediatrics and geriatrics. The aim of this feasibility study was to formulate the taste-masked warfarin-containing pellets to be applicable for dose personalisation and to improve patient compliance, as well as to investigate the effect of the core type (PharSQ® Spheres M, CELPHERE™ CP-507, and NaCl) on the warfarin release from the Kollicoat® Smartseal taste-masking-coated pellets. The cores were successfully drug-loaded and coated in a fluid-bed coater with a Wurster insert. An increase in particle size and particle size distribution was observed by optical microscopy. In saliva-simulated pH, at the Kollicoat® Smartseal level of 2 mg/cm2, none of the pellets demonstrated drug release, confirming their efficient taste-masking. However, in a stomach-simulated pH, a faster drug release was observed from PharSQ® Spheres M- and CELPHERE™ CP-507-coated pellets in comparison with NaCl cores. Additional experiments allowed us to explain the slower drug release from NaCl-containing pellets because of the salting-out effect. Despite the successful taste masking, the drug release from pellets was relatively slow (not more than 91% per 60 min), allowing for further formulation improvements.