Repository logo
  • English
  • Latviešu
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Latviešu
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Baryshev, M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Thioredoxin fold as homodimerization module in the putative chaperone ERp29 : NMR structures of the domains and experimental model of the 51 kDa dimer
    (2001) Liepinsh, E.; Baryshev, M.; Sharipo, A.; Ingelman-Sundberg, M.; Otting, G.; Mkrtchian, S.
    Background: ERp29 is a ubiquitously expressed rat endoplasmic reticulum (ER) protein conserved in mammalian species. Fold predictions suggest the presence of a thioredoxin-like domain homologous to the a domain of human protein disulfide isomerase (PDI) and a helical domain similar to the C-terminal domain of P5-like PDIs. As ERp29 lacks the double-cysteine motif essential for PDI redox activity, it is suggested to play a role in protein maturation and/or secretion related to the chaperone function of PDI. ERp29 self-associates into 51 kDa dimers and also higher oligomers. Results: 3D structures of the N- and C-terminal domains determined by NMR spectroscopy confirmed the thioredoxin fold for the N-terminal domain and yielded a novel all-helical fold for the C-terminal domain. Studies of the full-length protein revealed a short, flexible linker between the two domains, homodimerization by the N-terminal domain, and the presence of interaction sites for the formation of higher molecular weight oligomers. A gadolinium-based relaxation agent is shown to present a sensitive tool for the identification of macromolecular interfaces by NMR. Conclusions: ERp29 is the first eukaryotic PDI-related protein for which the structures of all domains have been determined. Furthermore, an experimental model of the full-length protein and its association states was established. It is the first example of a protein where the thioredoxin fold was found to act as a specific homodimerization module, without covalent linkages or supporting interactions by further domains. A homodimerization module similar as in ERp29 may also be present in homodimeric human PDI.
  • No Thumbnail Available
    Item
    Unfolded protein response is involved in the pathology of human congenital hypothyroid goiter and rat non-goitrous congenital hypothyroidism
    (2004-06) Baryshev, M.; Sargsyan, E.; Wallin, G.; Lejnieks, A.; Furudate, S.; Hishinuma, A.; Mkrtchian, Souren; Rīga Stradiņš University
    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the protein folding and processing capacity of the endoplasmic reticulum (ER). The UPR is induced by the pharmacological agents that perturb ER functions but is also activated upon excessive accumulation of the mutant secretory proteins that are unable to attain correct three-dimensional structure and are thus retained in the ER. Such defects in intracellular protein transport underlie the development of a number of phenotypically diverse inherited pathologies, termed endoplasmic reticulum storage diseases (ERSD). We have studied UPR development in two similar ERSDs, human congenital goiter caused by the C1264R and C1996S mutations in the thyroglobulin (Tg) gene and non-goitrous congenital hypothyroidism in rdw dwarf rats determined by the G2320R Tg mutation. In both cases, these mutations rendered Tg incapable of leaving the ER. A major ER chaperone immunoglobulin-binding protein (BiP), and a novel putative escort chaperone endoplasmic reticulum protein 29 KDa (ERp29) were found to be associated with Tg, which might be interpreted as the contribution of the quality control machinery to the previously shown retention of Tg in the ER. We have extended our earlier observations of ER chaperone induction with the identification of the additional ER (ERp29, ERp72, calreticulin, protein disulfide isomerase (PDI)), cytoplasmic (heat shock protein (HSP)70, HSP90) and mitochondrial (mtHSP70) upregulated chaperones and folding enzymes. Activation of the transcriptional arm of UPR, as judged by the appearance of the spliced (active) form of X-box binding protein (XBP1) and processed activating transcription factor 6 (ATF6) transcription factors was suggested to contribute to the overexpression of the ER chaperones. The processing of ATF6 was observed in both human and rat tissues with Tg mutations. Whereas, in human tissues, weak splicing of XBP1 mRNA was detected only in the C1264R mutant, all rat thyroids including wild-type contained significant amounts of the spliced form of XBP1 as opposed to human liver and rat brain tissues, implying the existence of a previously unknown tissue-specific regulation of XBP1 processing.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback