Repository logo
  • English
  • Latviešu
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Latviešu
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ērenpreisa, Jekaterina"

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The cancer aneuploidy paradox : In the light of evolution
    (2019-01-01) Salmina, Kristine; Huna, Anda; Kalējs, Mārtiņš; Pjanova, Dace; Scherthan, Harry; Cragg, Mark S.; Ērenpreisa, Jekaterina; Biomehānikas zinātniskā laboratorija
    Aneuploidy should compromise cellular proliferation but paradoxically favours tumour progression and poor prognosis. Here, we consider this paradox in terms of our most recent observations of chemo/radio-resistant cells undergoing reversible polyploidy. The latter perform the segregation of two parental groups of end-to-end linked dyads by pseudo-mitosis creating tetraploid cells through a dysfunctional spindle. This is followed by autokaryogamy and a homologous pairing preceding a bi-looped endo-prophase. The associated RAD51 and DMC1/γ- H2AX double-strand break repair foci are tandemly situated on the AURKB/REC8/kinetochore doublets along replicated chromosome loops, indicative of recombination events. MOS-associated REC8-positive peri-nucleolar centromere cluster organises a monopolar spindle. The process is completed by reduction divisions (bi-polar or by radial cytotomy including pedogamic exchanges) and by the release of secondary cells and/or the formation of an embryoid. Together this process preserves genomic integrity and chromosome pairing, while tolerating aneuploidy by by-passing the mitotic spindle checkpoint. Concurrently, it reduces the chromosome number and facilitates recombination that decreases the mutation load of aneuploidy and lethality in the chemo-resistant tumour cells. This cancer life-cycle has parallels both within the cycling polyploidy of the asexual life cycles of ancient unicellular protists and cleavage embryos of early multicellulars, supporting the atavistic theory of cancer.
  • No Thumbnail Available
    Item
    Cancer/testis antigens and gametogenesis : A review and "brain-storming" session
    (2005-02-16) Kalējs, Mārtiņš; Ērenpreisa, Jekaterina
    Genes expressed both in normal testis and in malignancies (Cancer/ Testis associated genes - CTA) have become the most extensively studied antigen group in the field of tumour immunology. Despite this, many fundamentally important questions remain unanswered: what is the connection between germ-cell specific genes and tumours? Is the expression of these genes yet another proof for the importance of genome destabilisation in the process of tumorigenesis?, or maybe activation of these genes is not quite random but instead related to some programme giving tumours a survival advantage? This review collates most of the recent information available about CTAs expression, function, and regulation. The data suggests a programme related to ontogenesis, mostly to gametogenesis. In the "brain-storming" part, facts in conflict with the hypothesis of random CTA gene activation are discussed. We propose a programme borrowed from organisms phylogenetically much older than humans, which existed before the differentiation of sexes. It is a programme that has served as a life cycle with prominent ploidy changes, and from which, as we know, the germ-cell ploidy cycle - meiosis - has evolved. Further work may show whether this hypothesis can lead to a novel antitumour strategy.
  • No Thumbnail Available
    Item
    DNA methylation of the Oct4A enhancers in embryonal carcinoma cells after etoposide treatment is associated with alternative splicing and altered pluripotency in reversibly senescent cells
    (2018-02-01) Bariševs, Mihails; Inashkina, Inna; Salmina, Kristine; Huna, Anda; Jackson, Thomas R.; Ērenpreisa, Jekaterina; Institute of Microbiology and Virology
    The epigenetic mechanisms underlying chemoresistance in cancer cells resulting from drug-induced reversible senescence are poorly understood. Chemoresistant ESC-like embryonal carcinoma PA1 cells treated with etoposide (ETO) were previously found to undergo prolonged G2 arrest with transient p53-dependent upregulation of opposing fate regulators, p21CIP1 (senescence) and OCT4A (self-renewal). Here we report on the analysis of the DNA methylation state of the distal enhancer (DE) and proximal enhancer (PE) of the Oct4A gene during this dual response. When compared to non–treated controls the methylation level increased from 1.3% to 12.5% and from 3% to 19.4%, in the DE and PE respectively. It included CpG and non-CpG methylation, which was not chaotic but presented two patterns in each enhancer. Discorrelating with methylation of enhancers, the transcription of Oct4A increased, however, a strong expression of the splicing form Oct4B was also induced, along with down-regulation of the Oct4A partners of in the pluripotency/self-renewal network Sox2 and Lin28. WB demonstrated disjoining of the OCT4A protein from the chromatin-bound fraction. In survival clones, methylation of the DE was considerably erased, while some remnant of methylation of the PE was still observed. The alternative splicing for Oct4B was reduced, Oct4A level insignificantly decreased, while the expression of Sox2 and Lin28 recovered, all three became proportionally above the control. These findings indicate the involvement of the transient patterned methylation of the Oct4A enhancers and alternative splicing in the adaptive regulation of cell fate choice during the p53-dependant dual state of reversible senescence in ESC-like cancer stem cells.
  • No Thumbnail Available
    Item
    Jāņa Ērenpreisa skola
    (Paula Stradiņa Medicīnas vēstures muzejs, 1997) Ērenpreisa, Jekaterina
  • No Thumbnail Available
    Item
    Jānis Oļģerds Ērenpreiss (1929–1996)
    (Paula Stradiņa Medicīnas vēstures muzejs, 1997) Ērenpreisa, Jekaterina
  • No Thumbnail Available
    Item
    Jānis Oļģerts Ērenpreiss and His Theory of Carcinogenesis
    (Paula Stradiņa Medicīnas vēstures muzejs. AML Medicīnas vēstures institūts, 2000) Ērenpreisa, Jekaterina; Dālmane, Aina; Ērenpreiss, Juris
  • No Thumbnail Available
    Item
    Meta-analysis of cancer triploidy : Rearrangements of genome complements in male human tumors are characterized by XXY karyotypes
    (2019-08-13) Vainshelbaum, Ninel M.; Zayakin, Pawel; Kleina, Regīna; Giuliani, Alessandro; Ērenpreisa, Jekaterina; Department of Pathology
    Triploidy in cancer is associated with poor prognosis, but its origins remain unclear. Here, we attempted to differentiate between random chromosomal and whole-genome origins of cancer triploidy. In silico meta-analysis was performed on 15 male malignant and five benign tumor cohorts (2928 karyotypes) extracted from the Mitelman Database, comparing their ploidy and combinations of sex chromosomes. A distinct near-triploid fraction was observed in all malignant tumor types, and was especially high in seminoma. For all tumor types, X-chromosome doubling, predominantly observed as XXY, correlated strongly with the near-triploid state (r ≈ 0.9, p < 0.001), negatively correlated with near-diploidy, and did not correlate with near-tetraploidy. A smaller near-triploid component with a doubled X-chromosome was also present in three of the five benign tumor types, especially notable in colon adenoma. Principal component analysis revealed a non-random correlation structure shaping the X-chromosome disomy distribution across all tumor types. We suggest that doubling of the maternal genome followed by pedogamic fusion with a paternal genome (a possible mimic of the fertilization aberration, 69, XXY digyny) associated with meiotic reprogramming may be responsible for the observed rearrangements of genome complements leading to cancer triploidy. The relatively frequent loss of the Y-chromosome results as a secondary factor from chromosome instability.
  • No Thumbnail Available
    Item
    The Price of Human Evolution : Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer
    (2023-07) Ērenpreisa, Jekaterina; Vainshelbaum, Ninel Miriam; Lazovska, Marija; Kārkliņš, Roberts; Salmina, Kristine; Zayakin, Pawel; Rumnieks, Felikss; Inashkina, Inna; Pjanova, Dace; Ērenpreiss, Juris; Scientific Laboratory of Molecular Genetics
    The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
  • No Thumbnail Available
    Item
    The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction
    (2022-12) Vainshelbaum, Ninel M.; Giuliani, Alessandro; Salmina, Kristine; Pjanova, Dace; Ērenpreisa, Jekaterina
    The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein–protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer–testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma–germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
  • No Thumbnail Available
    Item
    Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe
    (2006-01-09) Kalējs, Mārtiņš; Ivanov, Andrey; Plakhins, Gregory; Cragg, Mark S.; Emzinsh, Dzintars; Lllidge, Timothy M.; Ērenpreisa, Jekaterina
    Background: We have previously reported that p53 mutated radioresistant lymphoma cell lines undergo mitotic catastrophe after irradiation, resulting in metaphase arrest and the generation of endopolyploid cells. A proportion of these endopolyploid cells then undergo a process of de-polyploidisation, stages of which are partially reminiscent of meiotic prophase. Furthermore, expression of meiosis-specific proteins of the cancer/testis antigens group of genes has previously been reported in tumours. We therefore investigated whether expression of meiosis-specific genes was associated with the polyploidy response in our tumour model. Methods: Three lymphoma cell lines, Namalwa, WI-L2-NS and TK6, of varying p53 status were exposed to a single 10 Gy dose of gamma radiation and their responses assessed over an extended time course. DNA flow cytometry and mitotic counts were used to assess the kinetics and extent of polyploidisation and mitotic progression. Expression of meiotic genes was analysed using RT-PCR and western blotting. In addition, localisation of the meiotic cohesin REC8 and its relation to centromeres was analysed by immunofluorescence. Results: The principal meiotic regulator MOS was found to be significantly post-transcriptionally up-regulated after irradiation in p53 mutated but not p53 wild-type lymphoma cells. The maximum expression of MOS coincided with the maximal fraction of metaphase arrested cells and was directly proportional to both the extent of the arrest and the number of endopolyploid cells that subsequently emerged. The meiotic cohesin REC8 was also found to be up-regulated after irradiation, linking sister chromatid centromeres in the metaphase-arrested and subsequent giant cells. Finally, RT-PCR revealed expression of the meiosis-prophase genes, DMCI, STAG3, SYCP3 and SYCP1. Conclusions: We conclude that multiple meiotic genes are aberrantly activated during mitotic catastrophe in p53 mutated lymphoma cells after irradiation. Furthermore, we suggest that the coordinated expression of MOS and REC8 regulate the extent of arrested mitoses and polyploidy.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback